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PREFACKE

This book prescnts the theory of a recently developed method of
statistical inference, that of sequential analysis. An eflort has been
made to keep the exposition on a level that will make most of the book,
with the exception of the Appendix, understandable to readers whose
mathematical background does not go beyond college algebra@nd a
firgt eourse in caleulus.  Some knowledge of probability andzsthtistics
is desirable for the understanding of the book, although ndt Sssential,
for a brief review is given of the fundamental concepts, mish as random
variables, probability distributions, and statistical hyfotheses.

To facilitate the reading of the book for those whabave no advanced
mathematical training, some concessions are made to generality und
ocegsionally even to rigor.  Furthermore, xSl}heﬂ_la.tical derivations
of somewhat intricate naturc are put in't-o"f.he Appendix, the reading
of which may be omitted without impgiring the understanding of the
rest of the book. - Ny

This book confaing an cxpa.nded: gxposition of the ideas and results
I published in two technical p;Lj'f(ars on this subject, one of which
appeared in 1944 and the othdrin 1945, as well as some further develop-
ments. Such developmem:fs;{fm‘ example, are; the discussion of multi-
valued decisions and &sfimation in Part 1I1I; improvements in the
limits for the averagé humber of observations required by a sequential
test; and limits fardthe effect of grouping in the binomial case. Some
recent results ¢S, A. Girshick are included and, in the discussion of
certain applications in Part 1T, use is made of some simplifications con-
tained in& ‘publication of the Statistical Research Group of Columbia
Univemsity dealing with these applications.

N\éal\'ly all tables in the ‘book were computed by the Statistical
Rﬁsez‘mrch Group of Columbin University while I was a consultant to
the group. A few sections of my two forementioned publications have
been incorporated in this bock, mogst-]y in the Appendix, without sub-
stanfial changes, ' i

I wish to express my indebtedness to Milton Fricdman and W, Allen
Wallis, who proposed the problem of sequential analvsis to me in
March, 1943, Tt was their elear formulation of the problem that gave
me the incentive to sfart the investigations leading to the present

v



vi PRETACE

developments. I also wish to express my thanks to the Social Secicnee
Rescarch Couneil for their help, which facilitated 1he publication of
this book. I am indebted to Mr. Mortimer Spiegelman of the Metyo-
politan Life Insurance Company for his careful reading of the manuy-
seript and for making several valuable suggestions, Thanks are die
also to Mrs. . Bowker who prepared the manuscript with particular
eare.

A, W
Columbia University
March, 1947 A
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INTRODUCTION

~SBequential analysis is a method of statistical inference whaose charac-
teristic feature iz that the number of observations required by the
procedure is not determined in advance of the experiment! The degic
ston to terminate the experiment depends, at each stage, on the results
of the observations previously made. A merit of the sequential ;r(ethd,
as applied to testing statistical hypotheses, is that test procedtwes can
he eonstructed which require, on the average, a substantially smaller
number of observations than egually rcliable tost proce{iures based on
redetermined number of observations.
T his hook presents the theory of a particular ethod of sequential
analysis, the so-called sequential probability ratip test, which was de-
Aised by the author in 1943 mainly for the pm'}ose of testing statistical
hypotheses, A comparison of this pa.rtig:lﬂg},r‘sequential test procedure
with any other (sequential or non-sequential) is shown, in Section AT,
to cffcet the greatest possible saving i the average numb(\r of observa-
tions, when uscd for testing a mnpk- hyputhosm against a gingle alter-
native, The sequential probability ratic fest frequently results in a
saving of about 50 per cen‘t\n the number of observations cver the
most efficient test proce {ir&’based on a fixed number of observations.
The first idea of a scyuential test procedure, i.e., a test for which the
number of observations is not determined in advance but is dependent
on the outcomg\bf’fhe observations ag they are made, goes back to
H. ¥. Dodgegad H. G. Romig?! who constructed a double sampling
procedure/NAccording to this scheme the decision whether or not a
second samaple should be drawn depends on the outcome of the obser-
vaumis\m the first sample. Whereas this method allows for only two
ahmpfes, Walter Bartky devised a multiple sampling scheme for the
particular case of testing the mean of a binomial distribution.? His
scheme is closely related to the test procedure that results from the
application of the sequential probability ratio test to this particular
case. 'The reason that Dodge and Romig infroduced their double

1H. F. Dodge and . G. Romig, “A Method of Sampling Inspection,” The
Bell System Technieal Journal, Vol. 8 (1929), pp. 613-631.
2 Walter Bartky, “Multiple Sampling with Constant Probability,” The Annals
of Mathematical Statisties, Vol. 14 (1943), pp. 363-377.
i



2 INTRODUCTION

sampling method, and Bartky his multiple sampling schemo was, of
course, the recognition of the fact that they require, on the average,
& smaller number of observations than “single” sampling,

The oceasional practice of designing a large seale experiment in sue-
cessive stages may be regarded as a forcrunner of sequentinl analysis.
The iden of such chain experiments was briefly discussed hy Marold
Hotelling? A very interesting example of this type is the scrics of
sample censuses of area of jute in Bengal carried out under the diree-
tion of P. C. Mahalanobis.* Sample censuses, steadily increasing in
size, were taken primarily for the purpose of obtaining prelimingds in-
formation about the paramcters to be cstimated, This nfermvation
was then used for designing the final sarapling of the \\-'hcg\l'é‘iﬁmmnse
jute area in Bengal. \ \

The problem of sequential analysiz arose in the Statistical Research
Group of Columbia Universily # in connection wifh some comments
made by Captain (.. L. Schuyler of the Bured of Ordnance, Navy
Department. Milton Friedman and W. Alle\Wallis recognized the
great potentialities and the far-reaching comsequences that sequential
analysis might have for the further de\-‘?ioiament- of theorctical sta-
tistics. In particular, they conjectured that a sequential test proce-
dure might be constructed whichskduld control the possible errors
committed by wrong decisions gkietly to the same extent as the best
current procedure hasged on a ;ﬁédetcrmined number of observutions,
and at the same time would require, on the average, a substantially
smaller number of obstg“v}}tions than the fixed number of observations
needed for the curvédb, Procoduret Friedman and Wallis also exhib-
ited a few examples of sequential modifications of elrrent test pro-
cedures resultin@l;in some cases, in an inerease of efficiency. It was
at this stag(::.{}uit they proposed tho problem of sequential analysis o
the authors®This gave the incentive for the author's investigations
whichj led to the development of the sequential probability ratio
tGSt.‘j \Y

N
'"\‘f Warold Hotelling, “TExperimental Delermination of the Maximum of a Fune-

iin,”" The Annals of Mathematical Statisties, Vol. 12 (1941), pp. 20-45.

'P. C. Mahalanobis, “A Sample Survey of the Acreage under Jute in Bengal,
with Discussion on Planning of Experiments,” Proceedings of the 2nd Fndian Sio-
tistical Conference, Caleutta, Statistical Publishing Society (1940),

# Dring World War II the Statistical Rescarch Group operated under 8 con-
tract with the Office of Scientific Research and Development and was dirceted
by the Applied Mathematics Panel of the National Defense Rescarch Committee.

& Bartky’s multiple sampling scheme for lesting the mean of a hinomial distribu-

tion provides an cxample of such a sequential test.  His results were not koown te
Friedman and Wallis at thal time, sinee they were published nearly a your later.



INTROTIUCTION 3

Because of the usefulness of the sequential probubility ratio test in
development work on milifary and naval cquipraent, it was classified
Restricted within the meanting of the Espionage Act. The author was
requested to submit his findings in & vestricted report? dated Sep-
tember, 19438 In (his report the scquential probubility ratio lest is
devised and the basic theory is given. To facilitale the use of this
new technique by the Army and the Navy, the Statistical Research
Group ssied » second report in July, 1944, which gives an clementary
non-mathematical exposition of the applications of the sequential prob-
ability ratio test and contains a considerable number of tables, chas{®,
and computational simplifications fo facilitale upplications.? A

Further advances in the theory of the sequential probabg’]j\ﬁf“r\at-io
test werc made in 1944, The operating characteristic (OCNeurve of
the sequential probability ratio test for the ease of a bifitmial distri-
bution was found by Milton Fricdman and George W{Brown (inde-
pendently of each other), and slightly carlier by-8WB. Stockman in
England.® The author then obtained the generab'OC curve for any
‘sequential probability ratio test!t A few #ofiths later a general
theory of cumulative sums was dex-'elo[.)(zdf?\xw‘liich gives not only the
OC curve of any sequential probability £a$id test but also the charac-
teristic funetion of the number of ohsgrvations required hy the test
and various other resulis. RN ’

The material in the suthor’s report together with the new advances
made in 1944 were publishedrby him in o paper, “Sequential Tests of
Statistical Hypotheses,” inFhe Annals of M uthematical Statisties, June,
1945. The Statistical Qééczireh Group issued a revised edition 8 of its

7 Abraham Wald, “Sagiential Analysis of Statistical Data: Theory,” a report
submitted by the Spatisfical Research Group, Columbin University, 1o the Applied
Malhematics PapelyXational Defense Rescareh Committes, Sept., 1943,

& The restrictedbelussificalion was removed in May, 1945,

v Harold Frcdefnan, “Sequential Analysis of Statistieal Dala: Applications,” o
report submitted by ihe Statistical Research Group, Columbia University, to the
Appligdathematics Panel, National Dofense Research Committee, July, 1044,

“\‘i}m_ 1. Stockman, “A Method of Obtaining an Approximation lor the Operaiing
(jhgl.rfmf.crisatic of a Wald Sequential Probubility Ratio Test Applied to a Rinomial
Distribution,” (British) Ministry of Supply, Advizory Service on Slalistical
Meihod and Quality Control, “Ueehinical Report, Series “R,"” No. Q.C./R/19.

1 Abraham Wuld, “A General Method of Deriving the Operating Characloristios
of any Sequential Probability Ratio Test,” unpublished memorandum submitied
to the Stutistical Research Group, Columbia University, Aprif, 1044.

2 Abraham Wald, “On Cumulative Sums of Random Variubles,” The Annals
of Mathematical Siatisttes, Vol. 15 (Bept., 1944),

™ The aulhorship of the revised edition, which was published by the Columbia
University Press, Sept., 1943, is ascribed (o the group as a whole.



4 INTRODUCTION

original report. The revised edition includes a discussion of the oper-
ating characteristic and average sample number curves for various
applications of the sequential probability ratio test.

Independently of the development in this country and about the
same time, G. A, Barnard recognized the merits of a sequential method
of testing.”* He treated the problem of double dichotomics, using a
sequential method of testing which, however, differs from the one that
results from the application of the sequential probability ratio test.

This book consists of three parts and an Appendix, Part I containg
a discussion of the general theory of the sequential probaliility ratio
test. Part 11 discusses applications of the general theory given in
Part I. These applications are given primarily to ilh{sﬁrﬁte the gen-
eral theory and te bring out some points of theoretidal interest which
are specific to these applications. Accordingly,“gfn’r'r"tputation&l simpli-
fications arc not stressed much and hardly{amy lables arc given.t?
Part III outlines briefly a possible approaglige the problem of sequen-
tial multi-valued decisions and estimation! This field is largely un-
explored and further progress s still & thatter of future dovelopments.
To facilitate the use of the book ¥ ¥éaders with no advanced mathe-
matical training, mathematical defivations of somewhat intricate na-
ture are included in the Appefidhx.

U (3. A. Barnard, “Economyf‘}’n’ Sampling with Refercnee to Engincering Expeti-
mentation,” (British) Ministiy of Supply, Advisory Serviee on Statistical Method
and Quality Control, Téehnical Report, Series “R,” No. Q.C./R/T.

5 Tor a more complate and detailed diseussion of these applieations the resder

i relcrred to thécrevised edition of the publication of the Siatistical Research
Group mentioned before,

\¥;



PART I. GENERAL THEORY

Chapter 1. ELEMENTS OF THE CURRENT THEORY OF
TESTING STATISTICAL HYPOTHESES

1.1 Random Variables and Probability Distributions

1.1.1 Notion of a Random Variable )

The outcome of an experiment or the reading of a meagurement is
usually a variable quantity or, more briefly, a variable, singé gencrally
it ean take dilferent values. For example, repeated medsirements on
the length of a bar will yield, in general, dificrent valu"ég} Frequently,
it will be possible to make probability statements ¢bitcerning the out-
come of an experiment or the reading of a melsirement. Consider,
for example, the cxperiment consisting of t-he“th\féiv of a die whose sides
are numbered rom 1 t0 6. Here the outcof®6f the cxperiment may be
any integral number from 1to 6. Various probahbility statements regard-
ing the outcome of the experiment camthe made.  For example, the prob-
ability that the outcome will be c;liya.i to 5 is equal to 34, or the prob-
ability that the outcome will Lé less than 4 is equal to 14, and so forth,
Probability statements c-axzr@lso he made about the outcome of the
following cxperiment: 50 noge that an individual is sclected at random
from a group of 1000 individuals and that his height is then measured,
"The probability thd¥ the height of the selected individual will be less
than (8 inches i;s\ésqilal to {00 times the number of individuals in the
group whose Wedehts are less than 68 inches.

A variabfe)y is called a random variable if for any given value ¢ a
definite probability can be ascribed to the event that z will take a value
lessothan c. A general elass of experiments where the outcome is &
l‘aﬁdt}m variable in the sense of the above definition may be described
as follows. Consider a class of N objects (or individuals) and some
measurable characteristic of these objects, such as weight, diameter, or
hardness. Suppose that the value @ of this characteristic varies from
object to object in the class. The experiment consists in selecting at
random one objuct from the class of N objects, and then measuring
the value ¢ of the characteristic of the selected object. Random selec-
tion is selection of an object In such a way that each object in the
class of N objccts has an equal chance of being chosen. The outcome

5
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x of such an cxperiment i3 a random variable, since a probability can
be aseribed 1o the event that z will take a value less than ¢, for any
given value ¢, This prebability is, in fact, equal to ¥/, where N,
is the number of objects in the class for which the characteristic under
conzideration has a valuc less than ¢, An interesting special case is
that in which the characteristic under congideration can talke only two
values. Such a situation arises, for instance, in the case of a manufac-
tured product where each unit is classified in one of two categories:
defective or non-defective. 'We shall aseribe the value 0 to a non-
defective unit and the value 1 to a defeetive unit. Then thé eharac-
teristic under consideration, i.e., the characteristic of being Hdefeetive
or non-defeetive, can take only the values 0 and 1. Cotisider o lot
consisting of N units and let &'y he the number of defectives in the Jof.
If the experiment consists in inspecting u single u],}it:’f}fmvn at random
from the lot, the outcome z of the experiment ' random variable
which can take only the values 0 and 1. Thk probability that » = 0
is oqual to (N — Ng)/N, and the probql%]}t-y that z = 1 iy equal to

N d/ j\r. '\ £/
1.1.2 Cumulative Distribution Function (c.d.f.) of 2 Random Vari-
able o\ o

Let z be a random variable, and denole by F(2) the probability thal
% will take a value less thamha given value 2. Then F(f) iz a function
of ¢ which is culled thoscumulative distribution funetion of ». Since

e\
Figph
y \t}

N\

A -

Fic. 1

any probability must lie between 0 and 1, we must have 0 < F() = 1
for all values of £, If ) and ¢, arc two values such that {1 < iy, then the
probability that z < ¢, is greater than or equal to the probability that
v <y, Le, F{ils) = F(4). In other words, F(f) cannot decrease as
? increases. A typical form of & e.d.f, F(§) is shown in Fig. 1 where !
ts measured along the horizontal axis and #(2) along the vertical axis.
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For any given values @ and b {a < &) we can easily derive the value
of the probability that & = z < & from the c.d.f, F(f). In fact, the
event that z < a and the event thut a = z < b are mutually cxclu-
give, Hence, the probability that one of these evenis will oceur is
oqual to the sum of the two probabilities: the probability that z < @
and the probability that ¢ £ 2 < 5. Thus, we have

{1:1) (probability that eithers <aora £x < b)
= (probability that z < @) -+ (probability that ¢ = = < b),

Since the probability that cither # < a or ¢ = z <) is the same™ as
the probahility that & < b, we obtain, from (1:1}, £\

N

(1:2) F(b) = F(a) + (probability that ¢ £ z < b)

Ilence, the probability that ¢ =« < b Is equal to F(b) F(a)

A gimple nterpretation of the c.df. F(£) can be giwen if the random
variable x is the value of a measurement on an oiﬁcct seleeted at ran-
dom from a given group of N objects. As men‘tqoned in Bection 1.1.1,
in this case the probability that the obgervéd Walue of z satisfies some
cquality or inequality relationship, suchyas z=corx<c,ora <
< b, is equal to the proportion of ubjucta in the group of & objects
for which the value of = satis(ies the equality or inequality in question.
Thus, F{t) is simply equal fo the “proportion of objects in the group
for which z-< t. With this ut{crpretﬂtlon of probability, the validity
of {1:2) becomes u(!lf—&\'lx " It merely says this: The proportion of
objeets for which & < D\s equal to the proportion of objects for which
z < & plus the pT‘Op(II”‘thl’l of objects for which ¢ £ x < b, The group
of & objects is freg ue tly called population or undverse. So [ar we have
congidered onl}a\p.opl1Lmt:mnk which contain a finite number of objects.
Such popula tiohs are ealled finite populations.

The intei'icn etation of the probability that a certain relation (equality
or 1nequ&11ty) holds as the proportion of objects in the population for
whith Ythe value of x satisfies that relation proves useful in many
instances and we shall employ it frequently. However, if we restrict
ourselves to finile populations, such an interprefation is not always
possible, In fact, the c.d.f.’s which arise from finite populations arc
of a speelal nature. Suppose that N ig the number of objects in the
population. Then the random variable = can take at most N different
values. Lot gy, - - -, aar be the different values z can take, arranged in
ascending order of magnitude, ie, a; < ay < -+ <y Clearly,
M £ N. 1f the value of z is the same for several objects, then 3 < N,
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The c.d.f. of z will be a step function of the type shown in Fig. 2. The
distribution funetion makes exactly M jumps and the magnitude of
each jump is equal to 1/N or an integral multiple of 1/N. A c.df.
represented by a continuous curve, as shown in Fig. 1, is certainly not
of this type. Thus, if the e.dd. is given by a continuous curve, the
interpretation of probabilities as proportions of a finite population is
not possible. However, any c.d.f. can be approximated arbitrarily
closely by a e.d.f. arising from a finite population, if the number & of
objects in the population is sufficiently large. Thus, any c.d.f. can be

N\
F(ﬂ)k N
2 AN
NS ©
N
T |
o'—
AN
- §
6 220 8y G () G Gu

Fa@ 2

regarded as a limiting form ef & e.d.f, arising from a finite population
when the number of objedtdin the population is inereased indefinitely.
This means that if we admit infinite populations?! (populations with
infinitely many qbJécts), the interpretation of any probability as a
certain proportiof ef an underlying population is always possible. Of
course, the ngtién of an infinite population is only an abstraction con-
strueted mepely for the purpose of stmplifying the theory. To give an
example §)in underlying infinite population, consider a measurement
on the{lenigth of a bar, the outcome of which is regarded ag a random
vg;&z‘tb’{e # having a e.df. ¥(f). Then the underlying infinite popula-
#tlon’ may be thought of as an infinite sequence of repeated measure-
lents on the longth of the bar, and the actually observed measurement
is considered an element drawn from this population. Sometimes the
underlying population is finite, but the number N of objects in the

!By uan infinite population we mean an ordered infinite sequence of objects,
0 Oy, +--, ad inf. A eerluiv measurable characteristic of these ohjeets is considered
and the value # of this churactoristic is assumed to vary from ohjccl to object.
By the proportion of objects in the infinite population for which x satisfios a given
relation (equality or inequality) we mean the lirniting value of the corresponding
proportion in the finite population (O, -+, Ox) ag N increases indefinitely.
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population i3 so large that we may find it more convenient to treat
the problem us if ¥ were infinity, 1.c., as if the population were infinite.
Suppose, for example, that we are intcrested in the height distribution
of all male individuals of age 20 and above living in the United S ates.
The number of such individuals is so large that considerable mathe-
matical simplification may be achicved by treating the population of
such individuals as if it were infinite.

1.1.3 Probability Density Function

Let F(2) be the c.d.f. of a random variable 2. As we have geen in,

) - A A .
Seclion 1.1.2, the probability that { — 2 g 5 (A>0) s gwen
Z\

. PR,
by F(t + %) — F(t — g) . The limiting value f{t) of thg”ratio

A A 0
r(ery)-r(-3) O
A as A approaches 0, provided that such a lim-

iting value exists,? is cailed the probability den: 'ify.\of the random wvari-
able  at the value x = £ The probability density f(2) is a function of
¢ and is called the probability density fu)n{:ﬁirfn of the random variable
z. It follows from the definition of j@i(::bx-oba-bilit}f density f(£) that
for small positive values A the pruct{}‘ct" flA is a good approximation

to the probability that  will Ii\e fn the interval £ > A probability

density function does n (Qi*n-'iays exigt, If the random wvariable z Is
discrete, i.c., if & can take only discrete values, the e.d.f. is 2 step fune-
tion and no probakilify density function cxists.

The probabilit;{that 2 will take a value within the interval [rom
t tofg (i < ds)'ehn be obtained by integrating the probability density
function f (Q‘%tiin # to &; ie., the probability in question is given by

e

) 2
O [
41
Ft 3 A) — F(t)
A
A may be positive or negative and may approach 0 in any arbitrary manner.
The exisience of this limiling value implies the existence of the limiting value of

r(+3)-r(-3)

A

2 The existence of the limiting value of is required, where
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Ome of the most Important probability density functions is the so-
called normal probability density function, which is given by

1 —%2(!—&)""
{1:3) HORS \/ﬁg

where g and ¢ are gome constant values. If a random varishle 2 has
a probability density function f(¢) given by (1:3), we say that o iy
normally distributed, or x hus a normal distribution. The shape of a
normal curve is shown in Fig. 3, where { is measured along the hori-
zontal axis and f(¢) along the vertical axis, O
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1.14 Discrete Randgfh, Variables

A randem Variab],tafm\is called discrcte if it can tauke only discrete
values. Any varighle which can tuke only a finife nuraber of different
values iz, of codrse, a discrete variable. A varisble which can take
infinitely mamyialues may still be discrete. For example, if the vasi-
able « is resricted to integral values, » is discrote. The c.d.f. of a dis-
crete r.gn'@éin variable is & step function, as shown in Yig, 2. Thus, &
d.iscrge.t‘e randora variable has no probability density funection, but
ad\rhj’t-s an elementary probability law f(), where f(f) denotes the

sprobability that & = ¢,

’ In what follows we shall consider only random variables which
either admit o probability density function or have a discrete distri-
bution. Ty the probability distribution, or more briefly distribution,
), of a random variable &, we shall ulways mean the probability
density function of z, il a probability density function exists. If z is
& discrete random variable, £(2) will denote the probability that z = ¢
We shall sometimes refer to the distribution F(& of z also as the popu-
lation distribution of @, or the distribution of 2 in the population.
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1.1.6 Expected Value and Higher Moments of a Random Variable

Suppose that z ig a random varisble which has a discrete distribu-
tion. Let f(f) denote the distribution of #, i.e., f{&) is the probability
that z = &. Then the expected valuc of z, in symbols E{z), is de-
fined by

(1:4) @) = ) )

where the summation is to be taken over all possible values ¢ of z.
Interpreting the probability j(#) as the proportion of objects in the
population for which x = ¢, we see from (1:4) that the expected valic ™
Kix) of z iz the same as the mean value of x in the pr)puLLtl(m *]\f X
is a continuous variable which admits a probability density hmchon
f(£), then the expected value of 2 is given by

7%
S

+o

(1:3) E{x) =f LfE dt S 4
The expected value of x is often called also the\\pﬂpulation Tmean, or
meun of . R

A function ¢(z) of a random variable @38 jtself a random variable.
For any positive integer r and for any. com,mnt e, the expected value
of {x —¢)” is called the rth populatlon ‘moment of @ referred to the
value ¢, Of special intevest is the ¢ise in which ¢ = E(z). The ex-
pected value of [z — E(@)]" iz called the rth moment of z referred to
ithe mean. The %ocon d momentrelerred to the mean, ie., the expecied
value of [¢ — E(x)]?, is als0 ealled the varianee of x. l‘hc syuare root
of the varianee is t*aﬂed\ﬁio standard deviation,

Consider the norma.l probability density function

AS

H 9 » __1_
(1:6) \..\u,\ 1 =

1 I
livy? {t—u)

where u, m;h s arc constants (& > 0), Let = be a random variable
W hm(ﬁ dlstmbutmn is given by (1:6). That the (“qJLctcd value of z
isqhan equal to p and the variance of 2 1s equal to ¢* can casily be

verified.

1.2 Notion of a Statistical Hypothesis

1.2.1 TUnknown Parameters of a Distribution

Let = be a random variable. A statistical problem arises when the
distribution of # is not known and we want to draw some inference
concerning the unknown distiibution of z on the basis of a limited
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number of observations on z.  Frequently, the distribution of z iz not
entirely unknown, le., some partial knowledge of the distribution of
x 13 available a priori. To illustrate this we shall consider the two
following examples.

Example 1. Congider a lot consisting of N units of a esrtain manufactured
product. Suppose that each unit is classified in onc of the two eategorics, defective
and non-defective. The value 0 is assdgned to each non-defective unit and the
value 1 to each defective unit. One unit is drawn at random from the lot and is
ingpected. The outcome 2 of this experiment is a random variable which can take
only the values 0 and 1. Denote by p the proportion of defectives in the lot.
Theu the probahbility that @ = 1 is equal to p and the probahility that'@\~"0 is
equalto 1 — p. Thus, if the value of p were known, the disiribution of/#would be
completely known., Usually ¢ is unknown and we want to make gomeinfcrence
vegarding the value of p by inspecting a limited number of units deaplirom the lot.
I pis unknown, we have only purtial knowledge of the distribgtian’ of 2; we know
meraly that z is restricted to the values 0 and 1. In this efide'p &5 considered an
unknown parameter which ean have any value bcheenI[\ahd 1. We shall alzo
say that the distribution of z lnvolves an unknownsparemeicr p.  Thus in this
cxample the distribution of 2 is known exeept for Ll(s wilue of an unknown para-
ineter p, s in”

Ezample 2. Suppose that the length of a }311%'; ‘measured with an instrument
for which the error of messurernent is kno®wMo be normally distributed. The
outecome 2 of such a measirement is then & yérmally distributed random variable,
Le., the distribution of z is given by thé'mermal density function
3 —--2—1— r—p)?

= ¢ 2

AL 2
\

Usually the mean » and €he%ariance o of the distribution sre unknown. These
quantities are also culled the parameters of the normal distribution. The mean »
can take any real valug’and ¢% can take any positive value. Thus, In this example
too, the distributwii}n'furwtion is known except {or the valies of the parameters
e and oF invob{h};l"in the distribution function,

&
A g,e.ﬁ%:ﬂ situation similar to that given in Examples 1 and 2 may
be ddseribed as follows: The functional form of the distribution function
ésjky\ww-n and merely the values of a findte number of parameters involved
N the distribution function are unknown; t.e., the disiribution function
is known except for the values of a finite number of parameters. In lix-
ample 1 the only unknown parameter is the proportion p of defectives
in the lot. In Txample 2 there ave two unknown paramecters, the mean
& and the variance o°.
In what follows we shall assume that the distribution of the random
varizble z is known cxcepl for the values of a finitc number of param-
eters.
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1.2.2 Simple and Composite Hypotheses

Let &, -+ -, & be the unknown parameters of the distribution of the
random variable z under consideration. A sfatement about the vahues
of 8y, -+, 8 is called a sémple hypothesis i it determines uniquely the
values of all & parameters. Tt is called a composite hypothesis if 1t s
congistent with more than one value for some parametor. For ex-
ample, il there are two unknown parameters, 8, and #;, involved in
the distribution of x, the hypothesis that f; = 2 and #; = 4 is a simple
hypothesis, sines it specifies complately the values of the unknown
parameters.  On the other hand, the hypothesis that ¢ = 3 is com-
posite, In Example 1 the statement thatl the unknown proportion’
of defectives is equal to .2 18 a simple hypothesis.  On the othex{iand,
the statlcment that p lies between .1 and .3 is & composite li\})ofhesia
In Example 2 the statement that & = 3 would be & composﬂe hypoth-
esis, minee it does not specify the value of the unknow wariance o2,

In general, the parameters #, -+, & will not be\f-,ubgect to any
a priori restrictions; i.e., they may tmke any vhlus. ITowever, the
parameters may in some cases be restricted tejeettain intervals. For
instance, if one of the unknown p'Llam(\t(’ng@~the standard deviation,
this parameter is restricted to positivedyalues. In other cases, the
parsmoter may be able to take only d‘ ﬁni‘uo number of diserete values,

1.3 Outline of the Current Prqcedure for Testing Statistical Hypoth-
eses

o

1.3.1 The Sample ¢\

Tet z he a random\?ﬁﬁable and suppose that we wish fo test a
hypothesis concernifi® the unknown parameters of the distribution of
z. The decisiontd decept or reject the hypothesis in question is always
made on the b?_tnrs of a finite number of observations on 2. A set of a
finite mymbjer)of observations on  is called a sample. The number of
obborvati'is contained in the sample is called the size of the sample.

Wen ahall be concerned mostly with the case in which the successive

b’%ewaﬁons on x are independent in the probability sense, The suc-
k‘\l\"e observations #, « -+, #» on x are said to be independent in the
probability sense if the (conditional} probability distribution of the 7th
observation z; (£ = 2, - - -, n), when the values of the preceding obser-
vations xy, « - -, £5.1 are known, is not affected by these values. This
condition cannot be strictly fulfilled if the successive observations arc
drawn from a finite population. Censider, for instance, the case dis-
cussed in Example 1 on page 12. Suppose that two successive unifs
are drawn at random from the lot. Denote by #; the value of x for
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the first unit and by x» the value of = for the second unit. The distri-
bution of x, is clearly given as follows: the probability that &; = 013
1 — p and the probability that z; = 1 is equal to p. The distribution
of &, when the value of «; is known, is given ag follows: if &; = G,
then the probubility that zz = 1is equal to pN/(N — 1) and the prob-
ability that 2, = 0is equal to 1 — [pN/(¥ — 1}]. On the other hand,
if #; = 1, the probability that zs = 1 is equal to (pN — 1)/(N — 1)
and the probability that z; = 0 is cqual to | — [(pN —1)/(¥ — 1)1,
Thus, the probability distribution of @5 is affected by the outcome of
a,. For similar reasons no sirict independence can prevail in any, other
cage in which the suceessive observations are drawn from a finitQpopu-
lation. However, if the number of objects in the finite popirlaﬁon ig
sufficiently large, the dependence is only slight and eang l‘ﬂ niglected.

Lotz be a diserete random variable, and denote thel dhtubutmn of
z by f{f), Le., f(#) is the probabilily that @ = 2. Let 2%, ---, 2n bo A
set, of n independent observations on . Bccau&@)@f the mdependem'e
of the obscrvations, the probability of obtaininy % sample equal to the
ohserved one ig given by the product N

F@dfs) - ~ft€n)

This product is also called the ]mnt pmlm,bxhty distribution of ihe
observations @y, - -, &y o\

1 z is a continucus random ym iable admitting a probability density
function f(z}, then the Jant “density function of » independent obser-
vations @y, ---, 4, O xis given by the product

\\ FE0f@s) - flz)

1.3.2 The General Nature of a Test Procedure

D[,ﬂ(}t;(l\li} n the number of ohservations on the basis of which the
accept@i&i@d or rejection of the hypothesis in question is to be decided.
Any posable outeome of n successive observations is a sample of size n.
A%est procedure leading to the accepfance or rejection of the hypoth-

\ “8dfs in question iz simply & ruls specifying, for each possible sample of
size 7, whether the hypothesis should be rejected or accepted on the
basis of that sample. This may also bo expressed ag follows: A test
procedure is simply a subdivision of the totality of all possible samples
of size n» into two mutually exclusive parts, say part 1 and part 2,
together with the application of the rule that the hypothesis be re-
jected if the obscrved sample is contained in part 1 and that the
hypothesis be accepted if the observed sample is contained in part 2.
Part 1 is also called the eritical region. Since part 2 is the totality of
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all samples of size » which are not included in part I, part 2 is uniquely
determincd by part 1. Thus, choosing a test procedure is equivalent
to determining a critical region.

As an illustration, we shall discuss a few examples. Suppose that a
lot consisting of & units of a manufactured produet i submitted for
acceptance inspection, Assume that each unit iz classified in one of
the two categories: defective and non-defeetive. The proportion p of
defoctives in the ot is assumed o be unknown. Let pg be a value
between 0 and 1 such that we prefer to accept the lot if the proportion
p of defectives is = po and we prefer to reject the lot if p > po. SupQ
pose that a sample of » units, drawn at random from the lot, is inspecicd
and on the bagis of this sample a decision ig to be made to aceophthe
lot or reject it. In other words, on the basis of the inspection of the
sample of # units a decision Is to be made to aceept the}llﬁ)othcsis
p = pp or reject it. The critical region generally usqd’jfn this case is
delined as follows: The hypothesis that p = pg is rojeated, e, the lot
is rejected, i, and only if, the proportion of defeptives in the obzerved
sample of # units exceeds a suitably chosen nuhenical constant ¢.

Another example: Suppose that the lengthioba bar is measured with
an instrument for which the otror of jhgssurement is known to be
normally distributed with varianee equalto unity. Thus, the oufcome
2 of a measurcment ig a mormally @istributed random variable with
mean p equal to the true lengthi\oF ‘the bur and variance unity. Let
the hypolhesis to be tested ke ‘the statement that the true length of
the bar iz equal to a speeifiédwalue . This hypothesis is to be tested
on the basis of a samploctonsisting of n independent measurements
T1, - -, &, o the lopgthe of the bar. The critical region generally used

for this purpose istlefined as follows: The hypothesis that p = w13
rejected if, and Onl¥ if, the sample observed is such that | — o | 2 €
where & dem{te}“thc ari{hmetic mean of the n obscrvations and ¢ is a
suitably shdsen numerical constant.
Thegd wre, in gencral, infinitely many possibilities for choosing &
crjtic:il ’fegion. Tor ingtance, in the example just discussed we could
ave used the median, or the geometric mesn, or the harmonic mean,
orcome other mean of the observations instead of the grithmetic mean.
The various critical regions cannot be regarded as equally good and
the fundamental problem in testing hypothoses is to sct up principles
for the proper choice of the critieal region. Such principles have been
advanced by Jerzy Neyman and Egon S. Pearson. In the next section
we shall discuss briefly the basic idea of the Neyman-Pearson theory.?

% See, for example, J. Neyman and E. 8. Paarson, Statisticel Research Memoirs
Universiiy Collego, London, Vol. 1 (1936), pp. 1-87.
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1.3.3 Principles for Choosing a Critical Region

The principles formulated by Neyman and Pearson for the proper
choice of a critical region constituted an advance of fundamental un-
portance in the theory of testing hypotheses. The purpose of this
section ig to indicate briefly the basic idea of the Neyman-Pearson
thecry.

A simple caze of particular theoretical interest arises when only one
unknown parameter # is involved in the distribution of the random
variable z under conzideration, and # can take only two values, 6y and
;. "The basic idea of the Neyman-Pearson theory can be indleated
even in this simple case. Therefore, in the rest of this gecfion, as
well as in the following section, 1.3.4, we shull restrict @Urdelves to
the case of a single parameter # which can take 011.1_3'*. Lwo values,
fa and 3. “(”:ﬂ

For any value § of the parameter, let f(z, 0) dy tate the distribution
of z. We shall denote f{z, 8)) by folz) and f¥G) by fi(x). Suppose
that it iz desived to test the hypothesis that B\= ;. We shall refer fo
this hypothesis as the null hypothesis and/glenote it by H,. The by-
pothesis that ¢ = ¢, will be called thg.;f{.]}emative hypothesis and will
be denoted by Hy. Thus, we shall déab with the problem of testing the
hypothesis Hy against the alteraive hypothesis Hy on the basis of
a sample of # independent obsdivations xq, -+ -, z, on .

As a basis for choosing amdny critical regions the following consider-
ations have been advaneéd by Neyman and Pearson: In accepling or
rejecting Hy, we ma-y‘"@\mmit- errors of two kinds. We comumit an
error of the first kihd if we reject /Ty when it is true; we commit an
error of the secdnd kind if we accept Ty when H, is rue. After a
particular critieal region W has been chosen, the probability of com-
mitting anserror of the first kind, as well as the probability of commit-
ingan @{T'"E)\"bf the second kind, is uniquely detormined. The probability
of (:Qm'isﬁtting an error of the first kind iy equal fo the probability,
@&érinincd on the agsumption that Hy is true, thut the observed

~gample will be included in the critical region W. The probability of
committing an error of the second kind is equal to the probability, de-
termined on the assumption that 77 is true, that the ohserved sample
will fall outside the eritical region W. For any given critical region
W we shall denote the probability of an error of the firgt kind by «
and the probability of an error of the second kind by g.

The probabilities « and # have the following important practical
interpretation: Suppose we draw a large number of samples of size =,
Let M be the numbcer of such samples drawn,  Suppose that for each
of these M samples we rejeet Hy if the sample i3 included in W and
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aceept Hy if the sample lies outside W, In this way we make I/ state-
ments of rejection or acceptance. Some of these statements will in
general be wrong. If 77 is true and if M is large, the probability is
nearly 1 (ie., it is practically certain) that the proportion of wrong
statements (ie., the number of wrong statements divided by 3) will
be approximately o If H, is true, the probability is nearly 1 that the
proportion of wrong statements will be approximately 8. Thus, we
can say that in the long run the proportion of wrong statements will
he a if Hy is true and 8 if H; is true,

Tt is cloar that one critical region W is more desirable than anothex
if it has smaller values of o and 8. Although either « or 8 can be made
arbitrarily small by a proper choice of the critical region 77, it Seim-
possible to make both « and 8 arbilrarily small for a fixed valhe of n,
ie., o fixed sample size. To illustrate this point, consider ‘e follow-
ing two cxtreme cases: (1) W i cmpty, ic., we al\\-'a{s;'accept Hy, ir-
respoctive of the outeome of the sample.  In this cas€at= 0 and 8 = 1.
(2) W is the totality of all possible samples, i.e. W& always reject H.
In this case @ = 1 and g = 0. If, for some ’15(3;%011, wa decide to con-
sider only critical regions W for which g has a given fixed value, the
choice of W is bagsed on the following prifigiple, introduced by Neyman
and Pearson: Restricting ourselves to .régiéns W for which e has a fixed
vulue, we choose that one for Whiphﬁ i a minimun.

The quantity o is called thefsi'ze of the eritical region, and the
quantity 1 — 8, the powersof the eritical region, A critical region
which has the highest powes in the class of all regions of equal size
is a most powerful sgion. Since minimizing £ is the same as
maximizing 1 — 8,/the Neyman-Pcarson principle concerning the
choice of the critioal Tegion W can be formulated as follows: Restriet-
ing ourselves 'tcirégiuns of a fixed size «, we choose that one which is
most powgeefol

For a ﬁéd sumple size, the probability 8 is a (single-valued) fune-
tion ofte, say B(a), il a most powcrful critical region is used. Thus,
givgl the number of observations on which the test ig based, one ol
ﬂ\@“qua-nt-ities o and g can still be chosen arbitrarily. The Neyvman-
Pearson theory leaves the question of this choice open. 1t is clear
that if « is small, 8{e) Is in general large, and if « Iz large, 8{e) iz In
general small. The choice of & (or 3} will be greatly nfluenced by the
relative importance of the errors of the first and second kinds in cach
particular application. Suppose, for example, that the loss caused by
an error of the first kind is one dollar and the loss caused by an error
of the second kind is mercly one cent. Then a small « and a large 8

will be preferable to a large o and a small 5.
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Neyman and Pearson show that a region consisting of all samples
(@1, * -+, &) which satisly the inequality

S (z)f1lee) - 1 (%}
Jolz)folxz) -+ fo (xn)

(1:7)

is & most powerful critical region for testing the hypothesis 17 against
the alternative hypothesis Hy, The term & on the right-hand side of
(1:7) is a constant chosen so that the region will have the required
gize @. The reason why the critical region defined by (1:7) d3\maost
powerful can be indicated as follows: For simplicity suppoge that the
probability distributions under Hy and Hy are disr,réﬁé Thus,
Fla)foleg) o - filz,) (£ =0, 1) denotes the probabil lfV of obtaining a
sample (‘qual to the observed one. The critical rog,wn defined by (1:7)
can be built up by sturting with a sample ElV (L, 20ty -y )

fiules) - fil@a)
Jol®1) +++ folan)

E? = (2,2 -+, 2, is included for W}lth

for which takes its mamm&m value Then a sample

f EBR ()
Jolze) - - fo(xn)
maximum valic in the set of mmphs whlch is left after B! has been re-
moved {rom the totality of all posmble gamples, In general, after r sam-
ples E', -+, E" have been mchidvd in the critieal region, a sample E7T1

f 1 (3:1; n)
iz added for which takes its maximum value in the
3 fou,,,) ”

fakes its

set of samples (xl,\ -, &,) which are left after E', .-+, £” have been
removed from the’tnta]i’ry of all samples. This construction is con-
tinued until #hi“size of the region reaches the desired value «.* Since
at any s[agg\of fthe construction the last sample included in the critical
1egmn as’the largest probability under 77, per unit probability under
Hy as ‘eomparcd with any other sample not yet included in the region,
it*éan be seen that the probahility measure of the critical region under

\H 1, 1.e., the power of the critical region, is greater than or equal to the
power of any other region of equal size.

Lot us fllustrate the prineiple for choosing a crltmal region by appli-
eation to a simple and familiar case. T.et Hy be the hypothesis that
# is normally distributed with mean 0y and variance unity. Let Hy be
the hypothesis that z is normally distributed with mean ¢, and vari-

*If 7 is & discrete variable, it may happen that, at the last stage of the construc-
tion, at the inclusion of tho last sample in the critieal region, the size of the region
inereases from a value below o to a value somewhat greater than o
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ance unity. Assume $; > 8. For testing Hy against A we shall have
fulmy) - fl(iﬂn)
Joley) - folza)

to determine the ratio Since

n
—14 Y, (wa—0)?

Julmy) - Julan) = %6 a=1

(2m)2
and
1~} 2 @a—tp)®
folw) -~ folza} = — & ! 2N
(2x)*
. . . L\
il inequality (1:7) ean be written as S e
" X \ N
—4 E (9'-0:_'91]2 - : "S
e a=1 ""..
(L:8) —— =k AN
~34 X (za—t0)’ v/
£ a1 \
A

Taking the logarithm on both sides of {hig.ifequality, we obtain

I2(e, — 6p)? — E2(x, — 6% = (B jﬁu}z’va +in(t® — %) 2 log k

N
o

Hoenee “:,‘;
9 log & <\Bw{g® — 0.
{1:9) Zxa = 08 b ;93 L_(g 1) =k {(say)
a=1 M\”\ 1 0

Tnequality (1:9) cun b\"s;&‘ﬂ;ben us

Sk — 00 K — nf

(1:10) N I P bt

x:\..o [ H N .

Now we s%{l}‘dctermine the value of £ such that the critical region

defined Jigithe inequality (1:10) has the size @ = .05 Since under the

h)-'qu;\}i'gsis Hy the random variable [Z{ze — Bo}]/# is normally distrib-

ybed\a¥ith zero mean and variance 1/n, we sce from 2 table of the

ezl distribubion that &7 = 1.64/+/n. Thus, the most powerful
region of size .05 consists of all samples for which the inequality

(1:11) e =0, L0
¥ n
holds.
This is 5 familiar result. Long before Nevman and Pearson devel-
oped their theory of testing hypotheses, it had been the practice to
nse the critical region (1:11) for testing the hypothesis that § = &

=k (say)
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against alternative values 8 > 8. A remarkable feature of the region
given by (1:11) is that it does not depend on the alternative value ;.
Tn the derivation of (1:11) merely the inequality #, > 8, was used.
Hence, the test defined by the region (1:11) is most powerful with
respect to all altcrnatives 6 > 8o, i.e., it is a uniformly most powerful
test when the alternatives are restricted to valucs grenter than fy.

1.34 Number of Observations Necessary if o and B Have Pre-
assigned Values

Tn the preceding section we assumed that « and the sample(Size n
were given and we werce looking for a critical region for which'8 was
o minimum. In this section we shall assume that « and 3 are given
and our problem s to determine the minemum value wofv for which
the power of the most powerful region of size o is gredfed than or equal
tol — 8. R4

Let 3, denote the probability of an crror ainthe second kind associ-
ated with a most powerful eritical region ofysize o when the test i3
based on n observations. 1t can be showgidhat 8, decreases, or at least
does not fncrease, with inercasing nln general, 3, will approach O
as n increascs indefinitely. Denote by n{a, 8) the smallest value of #
for which 8, = 8. If we wanla Pest procedure. such that the prob-
ability of an error of the ﬂ\gﬁ‘lﬁnd is equal to « and the probability
of an error of the sceond kihd tous not execed g, then according to the
surrent theory we musi draw & sample of size n = nlx, §). If weuse
& raost powerful c{@c;ﬂ region, we need a sample of size n = nla, 3)-

1.3.5 Testing:a Hypothesis Viewed as a Decision between Two
Courses of Action

It ]mpgé}lé frequently in practice that we have to decide between
two courses of action, say action 1 and action 2, and the preference
for, Q?le or the other action depends on the value of an unknown param-
eter 0 of the distribution of a random variable z. Denote by o the
\8&t, of all valuecs of 8 for which action 2 is not preferable to action 1.
Thus, for any value § not contained in e we prefer action 2 to action 1
The problem of deciding between these lwo actions on the basis of a
sample of n ndependent observations on ¢ may be formulated as &
problem of testing the hypothesis J7 that the true value of 8 is eon-
tajned in the sct . II the test procedure leads to the acceptance of
H we take action 1, and if it leads to the rejection of H we take ac-
tion 2.

Consider, for example, the following problem. A lot consisting of a
large number of units of a manufactured product is submitted for
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acceptance inspection. Suppose that the proportion p of defectives
in the lot is unknown. There are two courses of action: acceptance of
the lot and rejection of the lot. In general, there will exist a particular
value ¢’ of p such that if the truc proportion of defectives 8 < p’ we
prefer acceptance and if p > p’ we prefer rejection. If p = p’ wo are
indifferent which action is taken. Suppose that a decision is to be
made on the basis of a sample of z units drawn at random from the
lot. This problem may be viewed as a problem of testing the hypoth-
esis H that p < p’ on the basis of a sample drawn from the lot. The
lot is accepted or rejected according as /7 is accepted or rejected.

As mentioned in Section 1.3.3, the choice of a, ie., the size of the
critical region, is greatly influenced by the relative importante, we
attach to errors of the first and second kinds. If the problen:i\bf test-
ing a hypothesis arises out of the problem of deciding be@x’\{@“c\ﬁ'certam
two courses of action, the relative importance of the el'lj(a}s af the first
and sceond kinds may be judged by considering tbeﬁ)?’actical conse-
quences of taking one action when the valuc of tha paramcter is such
that the other action would havec been prefet:ane.
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Chapter 2. SEQUENTIAL TEST OF A STATISTICAL
HYPOTHESIS: GENERAL DISCUSSION

2.1 Notion of a Sequential Test

In the current theory of festing hypotheses the number of observa-
fions, i.e., the size of the sample on which the test is based, % preated
as a constant for any particular problem. An essential f(;zlt‘.qre of the
sequential test, as distinguished from the eurrent testProcedure, is
that the number of observations required by the sequential test de-
pends on the outcome of the observations and is;.ihffi‘efore, nol pre-
determined, but a random variable, &

The sequential method of testing a hypotkiedis H may be described
as follows. A rule is given for making oneof the following three deci-
sions at any stage of the experiment (zpft»'\f-lle mth trial [or cach mtegral
value of m): (1) to accept the hypothiesis H, (2) to reject the hypothesiz
H, (3) to continue the experiment by making an additional observa-
tion. Thus, such a test procedgré"is carried out sequentially.  On the
basis of the first observationOne of the aforementioned three decisions
is made. If the first or ﬁc’coﬁd deeizion is made, the process is termi-
nated. If the third dewsion is made, a second trial is performed,
Again, on the basis@fthe first two observations one of the three deci-
gions is made. If the third decision s made, a third trial is performed,
and so on. Thewptocess is continued until either the first or the sceond
decision is fade. The number n of observations required by such a
test prg.c\eah}e is a random variable, since the value of » depends on
the oiteeme of the observations,

Fj;}l‘ each positive integral value m, we shall denote by i, the to-

" Aality of all possible samples (zy, - -+, 2,,) of gize m. We shall also
\ \refer to M, as the m-dimensional sample space. A rule for making
onc of the three decvisions at any stage of the experiment can be de-
scribed as follows. For each integral value m, the m-dimensional samnple
space is split into three mutually exclusive parts, &,°, R}, and R.
After the first obscrvation z; has been drawn, the hypothesis H that

is being tested is accepted if x; lies in R,°; H is rejected if z, lies in
Ri'; or a seeond obscrvation is made if o, lies in R,. If the third
decision is made and a second observation xy dvawn, H is accepted,
I is rejected, or a third observation ig drawn, according as the ob-
served sample (21, 22) les in R, Ry', or Ry, I (21, 22) lies in Ry,

22
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a third ohservation 25 is dravwn and onoe of the three decisions is made
according as (zq, ¢q, 3) liesin By®, Ry', or Rs, and 50 on, This proeess
is stopped when, and only when, either the first or the sceond decision
is made.t Thus, a sequential test is completely defined by defining
the sets R.", E,', and R, for all positive integral values m. Since
R,® R.,', snd R, are mutually cxclusive and add up to the wholc
sample space M., it is sufficient te define any fwo of the sets R,°,
Rl and R,. Any onc of the three scts B’ Ry', and R, consists
precisely of all those samples which are not contained in the other two,
We shall call a sample (2, - -+, 2,,) ineffective if it containg an initial,
sogment (g, +++, Tne), where m’ < m, such that (z(, .-+, Tme) HesND
R, orin B,,'. A sample which is not ineffective will be sai'40 be
an effective sample. Clearly, for a sequential fest procedurdave shall
have an cffective sample at any stage of the experiment™, Thus, in
defining the sets R’ Rn', and R, we may disregards i{ieffective BAM-
ples. TIn other words, it is sufficient o state in whi{‘,h;\;)f the sets B0,
R,', and R, each effective sample (zy, - --, zuNshould be included,
£ since incffective samples cannot oceur during the*sequential process.
J‘he following is a simple example of s segential test. Suppose that
a lot consisting of a large number of unit$8f a manufactured product
je submitted for acceptance nspectiony Fach unit is classified in one
of the two categories: defective zggl}ﬁbn-defe(:tive. The proportion p
of defectives in the lot is unkngwn. The lot is considered acceptable
if p £ & given value p’. If p> ' we prefer to reject the lot. Thus,
we are intercsted in test-irilg:the hypothesis H that p < p’. The follow-
ing procedure of testi { F is a simple example of & sequential test.
Tet ny denote a given ;%;agm% " If the first n units inspected are non-
defective, we step(inSpection and the lot is accepted (7 is aceepted). T
If for some valterm = ng the mth unit inspected is found defcctive,
no further units are inspected and the lot is rejected (H is rejected).
We shallsassign the value 0 to any non-defective unit and the value 1
to anys defective unit, In this example, a sample (1, + ",y Ty 18 ef-
fectiva if and only f m S ng and @ = -+ = Tp1 = 0. R, con-
t%uirfs“no effective sample for m < mg, 1.e., acceptance is nob possible
for m < ny. Ra, contains only one cffective sample: (0,0, - -+, 0).
For any m = ny the set R, contains exactly one effective sample:
(©,0, ---,0,1).
The scts Ry, Ryt and By, (m = 1,2, ---) defining a sequential test
can be chogen in many ways, and a fundamental problem in the theory
of sequential tests is that of a proper choice of these scts. To formulate

1 We shall consider only sequential tests for which the probability is one that the
process will eventually terminate.
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principles for a proper choice of the sets B,.°, ', and R, it is neces-
sary to study the consequences of any particular choice. This will be
done in the next scetion. :

2.2 Consequences of the Choice of Any Particular Sequential Test

2.2.1 The Operating Characteristic Function

After a particular sequential test hias been adopted, i.e., a particular
choice of the sets R,,°, R,!, and R,, (m = 1,2, ---) has been made,
the probability that the process will terminate with the acceptunse of
the hypothesis Hy under test depends only on the distribution af the
random variable « under consideration. As before, it is assutugd that
the distribution of x is known except for the values of a’ﬁ'n:?t-e numbcer
of parameters, 6y, - B,L, say. 'Thus, the distribution\éf @ iz given
by a funetion f(z, 81, - -+ ) where the functional forpf is known, but
the true values of the parameters 8, - - -, 8, are unkﬁ‘owm To simplity
notation, we ghall usc the letter § w 1thout subscrlpt to denote the sct
of all k& parameters 8, -+ -, 8. Weshall Iqur% Y8 as a paramcter point,
gince 4 can be represented geometricully I}v a point with the coordi-
nates 8y, - - -, fr.  Since the distribution”of x iz determined by the
parameter point 8, the probability, of, accepting H, will be a function
of 8. This function will be derroted by L{#) and will be called the
operating characteristic (0C) ftmclmn If there is only one unknown
parameter # the function Z48) can be plotted as a curve, 8 being meas-
ured along the horizontal’axis and L(f) along the vertical axis. Since
we shall consider onlgf\tsts for which the probability that the proce-
dure will eventuallis terminate is equal to 1, the probability of reject-
ing IT, is equa}\"tr(j' i— L,

The OC futichion is very closely related to the notion of the power
function_imfhe current theory of tests. For any parameter point
which js\ot consistent with the null hypothesis [, the power of the
test sidelined as the probability of rejecting Hy when ¢ is the true
pmn‘t Thus, for any ¢ not congistent with Hy the power of the test

SNgjequal to 1 — L(®).

To illustrate the meaning of an OC function, wo shall eompute the
OC function of the particular sequential test given as an example in
the preceding section. In that example the only unknown parameter
is 8 = p, where p denotes the proportion of defectives in the lof. The
lot is accepted if, and only if, the first ny units inspected are non-
defeetive. The probability that the first unit inspected is non-defective
is equal to 1 — p. On the assumption that the size of the lot is suf-
ficiently large as compared with ng, the successive ohservations may
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be treated as being independent. Then the probability that all ng
units will be non-defective is equal to (1 — p)™. Thus, the operating
characteristic function is given by

Lip) = 1 —p)"

This function can he plotted, ag shown in Fig. 4, by measuring p
along the horizontal axis and L(p) along the vertical axis,

Lip}
1 N

0 1 N P
Fig & NS

The OC function describes wha.t-.J;h'(: ééqucutial test procedure ac-
complishes, For any parameter point 8 the probability of making a
correct decision can be obtamet;lfilhmediately from the OC function.
Tf the parameter point 6 igoeusistent with the hypothesis Iy to be
tested, then the probab}li‘t} of making a correct decision is equal to
L{®. I the true parzﬁ;@eﬁér point ¢ is not consistent with the hypoth-
esis Hg, the probability of making & correct deeision is equal to
1 — L(§). Cloagligsan OC function is considered more favorable the
higher the vaf}t{e,. of L{®) for ¢ consistent with Ifg and the lower the
value of L@\%or § not consistent with Ho.

2.2.2 ‘ "}he Average (Expected) Sample Number (ASN) Function of

L (" a Sequential Test
e have pointed out before that the pumber of observations re-
quired by a sequential test is not predetermined, but is a random vari-
able, because at any stage of the experiment the decision to termimate
the process depends on the results of the observations made so far.
For example, for the particular sequential test discussed in the pre-
ceding section, the number of observations required by the test may
be anything from 1 to ng. If no defects are found during the sampling
process, we shall make 7o observations. On the other hand, if the
frst m — 1 units inspected are non-defective and the mth. unit is de-
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fective for some value m < ng, then the total number of observations
made will be equal to m.

We shall denote by # the number of observations required by the
sequential test. Then # is a random variable.  Carrying ouf the same
sequential test procedure repeatedly, we shall obtain, in general, dif-
ferent values for n. Of particular interest is the expeetod value of #
(the average value of #n in the long run, when the same test procedure
is applicd repeatedly). For any given test proeedure the expected
value of n depends only on the distribution of x. Since the distribuo-
tion of x is determined by the paramecter point 6, the expeeted™walue
of n depends only on 8. Tor any given paramecter point gawe shall
denote the expected value of % by Ey(n). If thore is on]y'o{iéu\nklmwn
parameter § the function Ep(n) can he plotted as a curve, $-being mens-
ured along the horizontal axis and Fj(n) along the ¥ortical axis, We
shall refer to the average sample number functig&&f;j(n) briefly as the
ASYN function. W

As an example, we shall compute the ASN function for the purtieulsar
sequential test discussed in the precedingBection. For any positive
integral value m < no, the probability t‘h}t the test will be terminated
at the mth observation is given by (1 > p)™ 'p. We shall inspect ng
units if and only if the first ng %31 units are found non-defective.
Thus, the probability that the&st will require exactly n, observations
is equal to (1 — p)™ ', Henge, the expected value of 7 is given by

gL
I __Mz 1 — m—1 . np—1
p(n).\\m=lmp( P+ no(l - p)
The graph of tt\xe’, ABN funetion will be of the type shown in Fig, 5.
\Bath)

7"\W
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An OC funetion and an ASN function are associated with each test
procedure. These two functions are perhaps the most important con-
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sequences of o test procedure. The OC function deseribes how well
the test procedure achieves its objective of muking correet decisions,
and the ASN function represents the price woe have to pay, in terms
of the number of obscrvations required for the test. Thus, in judging
the relative merits of two different fest procedures, we shall compare
the OC and ASN functions of these two tests.

2.3 Principles for the Selection of a Sequential Test

2.3.1 Degree of Preference for Acceptance or Rejection of the Null
Hypothesis H; as a Function of the Parameter 0 Q)

In order to set up principles for the selection of a sequentialifest
) . AN

it is necessary to investigate the dependence of the preferencsiorre-
jection or acceptance of the null hypothesis Hy on the parameter point
9. Denotc by @ the set of all those parameter points & uifﬁi:'h are con-
sistent with T, i.e., Iy Is precisely the statement thiaé the true pa-
rameter point is ineluded in the set w. For exaniple, if there is only
one unknown paramcter 8 and if Hy is the hyi{uthesis that 2 is less
than or equal to & certain particular value 8 W is the set of all values
g for which 4 < 6, Since a correct (.inciﬁiié:;&s preferred to a wrong
decision, we can say that acceptance of 11} is preferred whenever 8 is
in », and Tejection of /g is preferred Srhenever 6 Is outside w,

The mere statement of prefcrengéjfor acceptance or rejection of Hy
iz not yet a sufficient guide for theselection of a proper sequential test.
For this purpose it is necegsaby to know something about the degree
of preference for acceptanﬁé}n‘ rejection as a function of the parameter
point 8. LA

We shall denote by % the set of all parameter points which lie outside
w., A point & will % ‘said to be on the houndary of w, or a boundary
point of o, if gny ‘arbitrarily small neighborhood of # contains points
of w as well@s of & The totality of all boundary points of @ will be
called the boundary of w. If, for example, there is only one unknown
pa,ramétt?r and v is defined by 8 < 8, then 8, is the only boundary point

miAf o is the set of all values 8 for which 8, = 8 = §;, then bhoth 8y
an }6?1 are boundary points. 1f the true parameter point 8 lies in w
but is near the boundary of @, the preference for acceptance of Iy will,
in general, be only slight. Similarly, if the true point # lies in & but
near the boundary of «, the prefercnce for rejection of Hg will be only
slight. In other words, the rejection of 1y is not considered to be a
serious error if @ is in « but near the boundary, Similarly, the accept-
ance of Hy is not considered a serious error if 6 is in & but near the
boundary of ». If the true point & lics exactly on the boundary of o,
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- there will be, in general, no definite preference for one or the other
action, ie., it will be indifferent to us whether the hypothesis 7T, is
accepted or rejected,

In general, it will be possible to subdivide the totality of all pavam-
eter points (parameter space) info three mutually exelusive zones:
zone consisting of all points ¢ for which acceptance of Hy is strongly
preferred; a zone consisting of points # for which rejeclion of 1, is
strongly preferred; and a zone consisting of all points § which arc not
included in either of the first fwo zones, i.e., the third zone consists
of all points # for which neither acceptance nor rejection of Hy is
strongly preferred. We shall refer to the first zone ag the zdte of
preference for acceptance, Lo the second zone as the zone of ghoference
for rejection, and to the third zone as the zone of indifférance. The
zone of preference for aceeptance will always be a sub\se't"of w and the
zone of preference for rejection will be a subset of @AThe zone of in-
difference will usually consist of points of e and.a‘:}ﬁﬁch are near the
boundary or on the boundary of w. .

Although the subdivision of the pflram(‘ter\};ﬁace into three zones as
deseribed above is used as a basis for the Q&Iectlon of a sequential test,
it cannot be considered a statistien! preblem. Such a subdivision is
made in cach case on the basis of phaetical considerations concerning
the eonscquences of a wrong de(,vsron

The subdivision of the parasneter space into the above-mentioned
threc zones gives a aome“haf ‘sketchy picture of the degree of pref-
erence for acceptance or\re,]ectlun as & function of the parameter 6.
A more refined dese pjzmn of the degree of preference for one or the
other action can b, given in terips of two functions we(f) and w, (9),
where wq(?) expregses the relative importance of, ie., the loss caused
by, the erroy. &f a('(*eptmg Hy when 8 is true, and 2 (B) expresses the
relative jupdetance of the error of rejecting Hy when 6 is true. The
functmn}u (6) = 0 for any # in w, since for such points § the aceept-
ance Of H o is a correct deeision. For any @ in @, we(8) will have a
posmve value which will, in general, inerease with increasing distance

\Qfsﬁ from the boundary of @, Similarly, w;(6) = 0 for all 8 in & and
w1 {8) > 0 for all @ in w. Again, w (8 will, in general, increase with
inercasing distance of 6 from the boundary of w. Our subdivision of
the parameter space into three zones may be mnterpreted as heing
equivalent to choosing the functions we(8) and w,(8) as follows:
we(8) = 0 when # is in the zone of preference for acceptance or in the
zone of indifference. For any 0 in the zone of preference for rejection,
wo(8) has a high positive value, say ¢;, indicating that the loss caused
by aceeptance is of practical importance. Similarly, 1o; (¢} = 0 for any
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8 in the zonc of preferenee for rejection or in the zone of indifference.
For any # in the zone of preference for acceptance, w, () has some high
value, say ¢, indicating that the loss caused by rejection of Hy is of
practical importance. Although 2 refined deseription of the depend-
ence of the degree of prelerence for one or the other action on @ may
oceasionally require the use of continuous funetions wy (8 and wy (6),
the step functions implicd by the subdivigion of the parameter space
into three zones will give a sufficiently good approximation for most
practieal purposes. They also have the advantage of great simplicity.
Thus, in what follows we shall assume that the dependence of. tlie
preference for one or the other action on 8 js described by a subdixisien
of the parameter space into three zones of the type mentioned abdve.

As an illustration, we shall discuss briefly a few examples. (Oonsider
first, the case in which a lot consisting of a large numbex ofunits of a
manufactured product ig submitted lor acceptance inspébtion. Assum-
ing that the units are classified in one of the two.bétegorics, defective
and non-defective, the preference for acceptancesdr'rejection of the lot
depends only on the proportion g of defecj:ii-’l?‘b' m the lot, which is
unknown. In this case there is only ongwnknown parameter § which
is equal to the proportion p of defectives(inthe lot. It will, in general,
he possible to select two values pg andfpf (po < p1) such that for any
p < po the rejection of the lot is ,gnifei'ror of practical importance, for
any p = py the acceptance of theilot is considered a wrong decision of
practical importance, wheregs for any value p between py and py there
is no strong preference fozt <ither action. Thus, the zone of indifference
may bo defined as the§iterval from po to p1, the zone of prefercnec for
acceptance as the seb consisting of all values p = po, and the zone of
preference for rejéétion as the set of all values p = . ’

As a scconds exhmple, consider the case in which the hardness x of
a eertain product varies from unit to unit such that & may he con-
sidered grmoimally distributed variable in the population of all units
prodused” Suppose that the mean value 6 of & is unknown but that
the Etandard devistion of ¢ is known. Assume that the most desir-
Sble value of ¢ is 8 and that the product becomes less desirable as
the absolute deviation | 8 — 8 | between the true mean and the most
desirable value 8, becomes greater. Suppose that the problem is to
decide whether the product should be put on the market or not. In
such a case, it will, in general, be possible to find a positive value ¢
such that if | 6 — 6 ] < ¢ we prefer to put the produet on the market,
and if | g — ég | > ¢ we prefer to withhold the product. TFor | 8 - by |
= ¢, we are indifferent which action ig taken. Thus, the hypothesis
H, may be defined as the hypothesis that |§ — 8y | < c. Weshall not
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define the zone of indiffercnce by the equation |§ — 8y | = ¢, since if
| ¢ — 8, | differs only slightly from e, the preference for one action over
the other is only shight and of no practical importance. However, it will
be possible to find a positive value A such that, if |8 — 8| < ¢ — 4,
we strongly prefer to accept £y (to put the produect on the market)
and, if | & — b | > ¢ + A, we strongly prefer to reject Hy (not to put
the product on the market) whercas, i ¢ — A = | f — | Ze-t A
no strong preference s given to either action. Thus, the zone of indif-
ference muy be defined by the inequality ¢ — A = l ¢ — By | = ¢+ A
the zone of preference for acceptance by | # — 8y | < ¢ — 4, awd the
zone of preference for rejection by | 0 — & | >+ Al )

In each of the previous two examples there was only ongubknown
parameter. We shall now consider an example where, thore arc two
unknown parameters.  Suppose that a lot consistingofiad large num-
ber of units of a manulactured product is Sl.lbllli;tﬁéd for acceptance
inspection.  Assume that the characteristic of fh\(; product in which
we are interested is the resistance to pressure\which is a measurable
quantity z. It iz assumed that r varies #ail unit to unit in the lot
and has a normal distribution with Ilnk?nii\fll mean g and unknown
standard deviation e, Let I be a v4lpé sach that acceptance of the
lot is strongly preferred if the ‘p’ﬁbport-ion of units in the lot with
resistance z = I does not exqepfiz .01, rejection of the lot is strongly
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preferred if the proportion of units in the lot for which x £ L excecds
.05, and no strong preference exists for either action if the proportion
of units in the lot with z < L lics between .01 and .05. The propor-
tion of units with # £ L is greater than or cqual to .05 if, and only if,
{# — L}/o = M, and the proportion of such units is < .01 if, and only
if, (u ~ L)/e = X2 (A\y < Ag). The values A, and Ay can be obtained
from a table of the normal distribution. Thus the zone of preference
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for rejection is given by the set of all values x and ¢ for which
(u — L)/e £ ¥, the zone of prefercnce for acceptance is given by
(w — L)/o 2 )z, and the zone of indifference is given by A < (x — L)/o
< Az. These three zones are repregented in Fig. 6, where p is measured
along the horizontal axis and ¢ along the vertical axis. The zone of
indifference iz bounded by two straight lines which ge through the
point L on the abscissa axis and have slopes 1/% and 1/);, respectively.

2.3.2 Requirements Imposed on the OC Function
&N

Suppose that the hypothesis ITy to be tested stutes that the true
parameter point 4 lies in a given sct w of parameter points, Theq wWe
wish to make the probability of aceepting Ify as high as pos'ﬂble when
g lics in w, and as low as possible when 6 is outside w.  Sincg the prob-
ahility of accepting Hy is by definition cqual to the OC, funbtlon Lig),
an OC funetion is considered more desirable the highér the value of
L(p) for any ¢ in @ and the lower the value of L{#)Jer any ¢ outside «.
An ideal OC function would be given by a funetion L{#) such that
L{g) = 1 for any # in » and L(f) = 0 for &P outside w. Suppose,
for example, that there i3 only one unldwn parameter § and the
hypothesis to be tested is the statement J;hat f = #;. Then, an ideal
OC funetion, as shown in Fig. 7, waould be given by a function L(9)
such that L{g) = 1for @ £ 6 and 8 = 0 for 8 > 6.

Lig} A

Example of an ideal
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The ideal form of the OC function ecan never be achieved on the
basis of incomplete information about & supplied by a random sample
drawn from the population, but it can be approached arbitrarily closely
if we are willing to take a sufficiently large sample.

The nearer the OC function is to the ideal function and the smaller
the expected numbei of observations required, the more desirable is
the sequential test. These two desirable features of a test arc some-
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what in conﬂiet,‘ since the elosor we approach the ideal form of the
OC function, the larger, in gencral, will be the number of observations
required by the test. To achieve a compromise between thesc two
conflicting desiderata, we may proceed as follows. Tivst we formulate
requiremonts concerning the closencss of the OC [unction to the ideal
function and then consider only tests which satisfy these requircments.
From these tests we try to sclect one for which the expected number
of obscrvations required by the Lest is as small as possible. To impose
the desired conditions on the OC function first and then to minimize
with respect to the expecled number of observations does noteséém to
be an unreasonable procedure, sinee the OC function is perhap% of
primary importance.

To formulate requirements on the OC [unction, we shall m*a,l{(, use
of the subdivision of the parameter spuce into the Lhm{: Zones discussed
in the preceding section. Since in the zone of im{iﬁémnce there is no
strong preference for one or the other action Jwsdhall not Impose any
eondifions on the behavior of 7{8) within thQ gone of indifference. In
the zones of preference for acceptance a (Lu‘_]ectmn the requirements
on the OC funetion may reasonably e %aﬁred as follows. For any @
in the zone of prefercnce for acceptance the probability of rejecting
the hypothesis /Ty, i.e., the value. Wk 1 — L(6), should be less than or
equal to a preassigned \'alu(, o And for any # in the zone of preference
for rejection the probability:cjf accepting Hy, i.e., the value of L(8),
should be less than or egual to a preassigned value 8.

‘We can summarize{the requirements imposed on the OC function
as follows. First thé\})ammeter space is subdivided into three mutually
exclusive zones; & gone of preference for acceptance, a zone of prefer-
ence for rejectioh] and a zone of indifference. Then two positive values
a and B, é‘th < 1, are selected. The reguirements imposed on the
ocC fum@mn are then given by the two following conditions:

(2 1) 1 — L{®) £ o for any # in the zone of preference for acceptance
\ (‘2 .2) L{8) = 8 for any 8 in the zone of preference for rejection

Condition (2:1) can also be written as.

(23) L) =1 — aforanyfin ﬁhe zone of preference for acceptance

The subdivision of the parameter space into three zones, as well as
the choice of the values « and 8, is to be made on the basis of
practieal considerations in cach particular case, We shall say that a
sequential test is admissible if it satisfics the requirements (2:2}
and (2:3).
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A typical OC function satisfying the conditions (2:2) and (2:3) is
gshown in Fig. 8, where there is only one unknown parameter ¢ and the
zome of preference for acceptance is defined by 8 < 6, and the zone of
preference for rejection is defined by ¢ = 8. {6 < 6;.)
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2.3.3 The ASN Function as a Basis for the Se}ecﬁon of a Sequen-
tial Test K¢ Ny

After the parameter space has been Subd’l\}:ﬂéd into three zones and
the quantities & and 8 have been chosen; ¢ consider only tests which
are admissible, i.e., fests which s&tigfy’ithc conditions (2:2) and (2:3).
Clearly, we wish to select a sequential test for which the expected value
of the number of observations séguired by the test is as small as pos-
gible. This expected value Ei(n) depends, as we have secn in Section
222, on the param(:ter’ptﬁlt g. TIn scction 2.2.2 we referred to the
function I%(n) as the \‘QN function of the test,

The expected vahgdyks(n) of the number of ohservations to he made
depends, of courségalso on the particular sequential test used. To put
this d(:pendegoé~in evidence, we shall occasionally use the symbol
Ey(n E S dorote the value £p(n) when the sequential test 8 is applied.

Tt is of particular interest to consider for any particular # the mini-
mum’?f\f’a.lue of Fy(n | 8) with respect to S where S may be any admis-
siblé sequential test. This minimum value, in symbols .\Em Ey(n| 8),

dep(ands only on 8. Clearly, for any admissible sequential test S we

have o

Fy(n] 8 = Min By(n | S)
g

If an admissible sequential test Sp exists for which the expected value
of the number of observations is minimized for all 8, ie., for which

2 I the minimum value does not exist, we can take the greatest lower bound with

respect to 8.
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Ea(n]su) = Min Eﬂ(n]S) for all ¢, then Sy may be regarded as a
8

“uniformly bost’” test., In general, however, no uniformly best test
exists,? i.e,, it will not be possible lo minimize the expeeted value of
the required number of observations simultaneously for el 8. Thus,
in such eases some compromise prineiple is to be adopted for the selec-
tion of & sequential test. We do not propose to enter into a discussion
of the various possible compromise prineciples that eould be advanced,
gince the various poscibilities have not yet heen fully investigated.
However, for the partieular, but theoretically very interesting, .cose
when & simple hypothesis Is tesfed against o single alternative) the
situation has been clarified and we shall discuss it In somef \ﬂ&mﬂ in
the next seetion. O
P\
24 The Case When a Simple Hypothesis H, Is ‘festéd against a
Single Alternative H, N

24.1 Efficiency of a Sequential Test O

We shall consider only two values of th :para.metcr 8, =ay 6y and 8.
Let Hy be the hypothesis that 8 = ¢, angd\Jet II; denote the hypothesis
that # = 6;. We shall refer to Ho as, the null hypothesis and to IT; us
the alternative hypothesis. With any “sequential test of the hypothesia
H, against the alternative hypgtheﬂq H, there will be aszociated two
numbers « and 8 between 0 #hd 1 such that it [T, is true the prob-
ability is « that we shall@:ommit an crror of the first kind (we shall
reject Hyp), and if Hy itﬁue the probahility is 8 that we shall commit
an errov of the second\kmd (we shall aceept Hy). Two sequential tests
S and 8 will bessaid to be of equal strength if the values « and 8
associated with:S are equal to the corresponding values o and 8 as-
sociated withlS. HHa <o and B =8, orif « £ o’ and 3 < &, we
shall say\hat S is btronger than 8" (8" is weaker than 8). If a« < &
and £ :> ﬁ orif @ > o and 8 < #, we shall say that the strength of
8 i€W6t comparable to that of §'.

\ Restricting ourselves to sequential tests of a given strength (a, 8),
a tost may be regarded as more desirable the smaller the cxpected
number of observations required by the test, Tf 8 and 87 are two
sequential tests of equal strength such that By, (n | S) < Ep,(n | §) and
B | 8) < Ep(n 18, or Ey(n|8) < Ey(n|8) and Eyn | 8) =
By (n ] 857, the test S will be considered preferable to &, If a test
So exists such that Eg,(n | So) £ By(n | S) and By (n | So) £ Eyp(n|S)

® The situation here is similur to that in the Neyman-Pearson theory of testing
hypotheses, where uniformly most powerful tests exist only in exceptional cases.
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for all testz 8 of strength equal to that of 8, we shall say that S is an
optimum test.

We shull denote by ng{e, 8 the minimum value of Egu(nJ S) with
respect to S, and by n4(e, §) the minimum value of Ep (n]8) with
respeet to S, where § may be any sequential test of strength (a, §).
Then for sny sequential test S of strength (e, 8) we have g {n ‘ 8S) =
nole, ) and Hp(n | S) = ni{e, ). A sequential test S of strength
(o, 8) is an optimum test if Ep(n|S) = nole, 8) and Eg(n|S) =
nile, 8). The existence of an optimum test has not been proved,
However, it will be shown in Section A.7 of the Appendix that for the, ™
so-called sequential probability ratio test Sy of strength (, 8), deftued

in Chapter 3, the ratios '
(2:4) B[S0 | 4 Bae|89 O
nole, B) ny (o, ) RY

can exceed 1 only by very small quantities which kdu be neglected for
practical purposes. Thus, for all practical purpescs, the sequential
probability ratio test may be regarded as anfoptimum test® In Sec-
tion A.7 it is also shown that the ratios {24) converge to 1 as ¢y ap-
proaches 6. o\

We shall define the efficiency of a géquential test .S of strength {ee, B)
no{e, ) nyle, B

by the ratio - when H ~i‘s:’{':1:ue and by — .
V emloﬂan(n|6’) v ToNy ; yEal(ﬂ|b)

true. Clearly, the efficiengy0f a sequential test under Ho, as well as
under A, lies always b%ﬁ-’eén 0 and 1. The greater the efficiency of
a sequential test of a given strength the more desirable it is, An opti-
mum test has the efﬁbiéncy 1 under Hy, as well as under ;. The se-
quential pmbah{ﬁ@y Tatio test for testing Hy, against &, is shown in
Section A.7 tediave an cfficiency, if not exactly, very nearly equal to 1
under Hy addvell as under Hy. As mentioned before, in Section A7
it is shmi';\l that the efficiency of the sequential probability ratio test
app;:oaéh’es 1 under Hy as well ax under H,, when 8, approaches fg.

when H, is

\224:.2 Efficiency of the Current Test Procedure, Viewed as a Par-
ticular Case of a Sequential Test

The curretit test procedure may be regarded as a particular case of

a sequential test. In fact, if & denotes the fixed number of observa-

tions used in the current procedure and if TV x denotes the critical region,

$Tf {he minimum value with respect to § docs not exist, we tuke the greatest

lower bound.
6 The author conjectures thut the sequential probability ratio test is exactly an

optimum test, but he did not succeed in proving this.



36 SEQUENTIAL TEST OF A STATISTICAT, HYPOTHERIS

ie., Wy is the totality of all those samples of size N for which the
hypothesis under test is rejected, then the current procedure may be
regarded as a sequential test defined as follows. For all positive inte-
gral values m < N, the regions R}, Rl are the empty subsets of the
m-dimensional sample space M, and Ry, = M. Form = N, By'is
equal to Wy, Ry® is equal to the totality of all samples of size N not
contained in Rx', and Ry s the empty sct.  Thus, for the current test
procedure we have Eg(n) = s, (n) = N.

Tt will be shown later that the cfficiency of the current test for test-
ing Hy against Hi, based on the most powerful critical region, isither
low. Trequently it is below 34, In other words, an optimudhy sequen-
tial test can attain the same a and 8 as the current mostypdwtrful test
on the basis of an expeeted number of observations n;u'gl{ “smaller than
the fixed number of obscrvations needed for the curpent most powerful
test. ~A\V

In Chapter 3 a simple sequential test procedude for tesling Ho against
H, will be proposed. 1t is called the sequential probability ratio test,
which for practical purposes can he regarfiéd as an optimum sequential
test. It will be seon that these sequential tests usually lead to average
savings of about 50 per cent in the\mimber of trials as compared with
the currcnt most powerful testa , v



Chapter 3. THE SEQUENTIAL PROBABILITY RATIO TEST
FOR TESTING A SIMPLE HYPOTHESIS H, AGAINST A SINGLE
ALTERNATIVE H,

3.1 Definition of the Sequential Probability Ratio Test

Let f(z, 8} denote the distribution of the random variable 2 under
consideration! Let FTy be the hypothesis that ¢ = 8, and Hy the hg™\
pothesis that ¢ = 6, Thus, the distiibution of x is given by flx, &)
when Hy is true, and by f(z, 6;) when I7; is true. We shall denbfe}he
successive observations on « by zy, o3, -+ +; etc. \.

As mentioned before, we consider only two cases e y« admits a
probability density funetion; (2) 2 has a discrete dlah{fmtwn. It is
our intention to cover both cases simultaneously. . \Moywvever, the diffi-
culty arises that some statements will have to be¥ormulated slightly
differently, depending on whether z admits a dm}km function or 2 has
a digerete distribution. This difference in forhuTation is caused mostly
by the fact that “probability density™ inf 8¢ continuous ease is to be
replaced by “probahility” in the dia(*reté ease. For the sake of brevity,
we shall occasionally use the word ‘“garcbability” to moan “probahility
density’” in the confinuous case, 1f. thlfs can be done without danger of
confusion. With this undcrs‘wndmg it will frequently be possible to
cover the diserete, as well as. i‘he continnous, case with a single statement.

For any positive inte g{'&l value m the probubtlity that a sample
B, * -y T 18 obtained\is given by

y si\N 'f)lm = f(ﬁ’:l, 91) e f(:ﬂnu 01)
when H ig t}j{ei}ﬁnd by
N o = Jan, 60) - S, 80)

when Llrg'lh tiue.

The\&quentml probability ratio test for testing Hy against H; i3
défintd as follows: Two positive constants A and B (B < A) are chosen.
At each stage of the experiment (at the mth trial for any integral

value m), the probability ratio pim/pom is computed. If
D1
(3:1) B<™ <4
Pom
t§(x, 6) denotes the probabilily density funciion of=, if a density funetion exists.
If & has a discrcie distribution, f(x, #) denotes the probability that the random

variable under consideration takes Lhe value z.
37
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the exporiment is continued by taking an additional obscrvation. If

(3:2) PLn = A

P

the process is terminated with the rejoction of 77, {zeceplance of 17;)

If

pl 13 -
(3:3) “Ye=p
pUm
the process is terminated with the acceplance of I7,.2 O\

The constants A and B are to he determined o thal thenlest will
have the preseribed strength (o, 8). The relations au'lf_m,ré the quan-
titics o, 8, 4, and B will be discussed in the next seeiigns

For purposes of practical compufation, if ig 11111(‘.5,1'\'1‘1‘1'61‘0 convenient
to compute the logarithin of the ratio Dot Pom: t-!l;a\hg.m-le b0 Py Pom
itself. The reason for this is that 1og (p1m/ Pogd el be written as the
sum of m terms, i.e.,

N
' X, # ~ (v Ii-{"m; & )
(3:4) log P log f? Y Q ~\—E— lo‘gJi 2
Pom Sy, 90)‘ ®, S, 6o)

We shull denote the ¢th term in fhissum by 2, ie,
. N Flay, 01)
(3:5) Wi = logf( 2 E?j
9 Ezy
{w’\\ ]
The test procedure i§ ‘esrried out as follows, the quantitics z, (i =
1,2, ---) being uged: "\t cuch stage of the experinent (at the mth trial
for cach int-egral\' 2zlue of m), the eumulative sum 2L Ao 2 15 com-
puted, IF N7
75

w

(3 'G) \E:\;“ log B < 2 —}— FO + Zon < IUg -I
O
the px}%riment is continued Dy taking an additional obsevvalion. If
NS
\”\“’ it otz 2 logd

the process is torminated with the rejection of Hy  If
4t e, £logh
the process is torminated with the acceptance of Hy,
21f for a particular snmple 2w = pom = 0 we shall define the value of the ratic

Plod Buw 88 1. IT for sore sumple {2y, 0, 20 we have P > 0 but py, =0
inequalily (3:2) is consideved tulfilled and &y is rejected.
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A few simple illustrations will Lelp to make the procedure more con-
crete. Suppose that the random variable @ ean tuke only two values,
0 and 1. We shall denote tho probability that & = 1 by p, the value
of which is assumed to be nnknown. Thus, p is the unknown param-
eter of the distribution. The distribntion of z is given by the function
J(x, p} which is defined only for two values of z, namely z = 0 and
=1 fl,p) =pand f(0,p) = |l - p. Let Hy be the hypothesis
that p = pg and Hy the hypothesis that » = p; (py # po). Then

Jt@s p) D \
2, = ——=log—ifa; =1 a\
(Cu pﬂ) Do 2\
N
1—p \ 7
= log — P1 i =0 N
1 — o '\
Hence, oS
- " 1T —p
(3:7) Z e+ zmzm*log—-!—(m—m\lk)g
Bo T =10
\\
where m* denotes the number of ones in™he sequence of the first m
obeervations. We accept Hy i o\
N
m* log e + (m —a®) log o Zlog B
Po L L —po
0"
We reject Hy (aceept HK
1 —m
m* log + (m — m*} Iog1~--—--— =z logd
:t\'" ¥n Lo
2\

We (:ontim@ﬂ’ie experiment by taking an additional ohservation if

\ 1 —
. d 1 A
~O log B < m* log il + (m — m*) log

- < log A
\} Do [ = pg

The expression (3:7) can, of course, be obtained cumulatively. If an
observation is a one, the constant log (py/po) iz added to the preceding
value of (3:7) to obtain the new value. If the observation 1s a zero,
the constant log (1 — p;)/(1 — py) 12 added.

As a second example, consider the problem of testing & hypothesis
about the mean of & normal distribution. Let z be a normally dis-
tributed random wvariable with unknown mean ¢ and unit variance,
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Let Hy be the hypothesis that ¢ = ¢, and Hy the hypothesis that
¢ = §,. Then

1 . 2
x, 6 = — fi_/ﬂm_ac)
f( 3 0) '\/21‘[’
and
1 -
2,81) = —= ¢ =00
f( I) \/§1rr
ITence, ( ) .
g, 0 L 0
z; = log— = (I — fo)e; + — (6,7 — 8,2
Df(i"a', %) % ) 2 (B i) A
and " Y
P mo N,
log =" =y oz = (0~ ) > et 0N
Doa i1 2 \ D
If \l‘*.s

b3

" ; l""i“
6, — fu) x; + 5 (002 — 91)).§~§0\g A
1 N/
the process is terminated with the 1'ejecti£),1"R){3 H, If
¥ Y Nt
LD\
(B — Bo) Zﬂlg + 5(&? — ") £l B
1

the proeess is terminated withthe acceptance of H,. If

NS

A > L :

log B < (61 —h) D e + = (8% — %) < log A
O 1 2

the experiment is, émt-inued by taking an additiona! obscrvation.

Apain, log {plmfpbﬁ\) eah be eomputed cumulatively if after cach ob-

servation z; wé‘bémputc (61 — fo)as + 24(6,2 — 8% and add it to the

breceding \.ﬁﬁe of 108 (71 Bom)-

3.2 ”F,.ﬁn%amental Relations among the Quantities a, B, 4, and B

» ;I“?r:."this section we shall derive certain inequalities satisfied by the
“quantities «, 8, A, and B which will provide the basis for determining
the constants 4 and B in the sequential probability ratio lest.
We shall say a sample @1, +++, z,) Is of type O if

Pin _ ,0) - fleg, 0

——r<dform=1-...5~1
Pom  flz(,60) - -+ S (@, 60)

B <

and
Din

Pun

B

1A
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Bimilarly, we shall say a sample (x;, + -+, z,) 18 of type 1 if

< Pim _ .fgﬂh, 1) - f'f-?m,-_ 91)_

Pom 21, Oo) <+ Jlen, 0)

<Adform=1,---,n—1

and

pUra
Thus, a sample of type 0 leads to the aceeptance of Hy and a sample
of tvpe 1 leads to the acceptance of Iy (vejection of I7y).

Clearly, for any given sample (zq, ++ , 2,) of type 1 the prob&blht\
of obtaining such a sample ks at least 4 & A times as large under hypothesis
IT, as under hvpot@mﬂ 0 Thm, the probability measure ef)the
‘ro’raMmplea of type | is also at least 4 times as Lk @D under
Hy asunder Hy. The probability measure of the to’[aht\r(ﬁ }111 samples
of type 1 is the same as the probability that the hequexttm.] process will
terminate with the acceptance of 7 (rejoction of HO)\ But the Jatter
probability is equal to o when Hy g true and to I — 3 when H, is

truc? Thusg, we obtain the inequality Xy N
3:8) 1 -8z Aq \
This incquality can be writfen as o\«

1’23
(3.9} 4 =2 g —

Thusg, (1 — 8)/« is an upperiimit for 4.

A Iower limit [or B8 (*,azn Wie derived in a similar way, In faet, for
any given sample (;rl,\\ , 2n) of type 0 the probability of obtalmng
such a sample undeg ¥, is at most B times as large as the pr obubility
of obtaining huch‘a»sample when Ay 15 true,  Thus, alse the probability
of accepling Ha\ls at most B times as large when H) is true as when
Hy ¢ tru ithﬁice the probability of accepting Iy is 1 — o when Hy
is true an% when Hy is true, we obtain the incquality

(3 10?\ g=(1 —a)B _
’fhls inequality can he written as
(3:11) Bz

1~

Thus, 8/(1 — «) is a lower limit for B,

8 The probability that £y will be accepted when Hyls true is by definition equal
to 8. Seetion A.1 of the Appendix shows that the probability is one thal the sequen-
tis] process will eventually terminate.  Thus, the probabilily that Hy will be rejected
whon I7; iz true must be equal to 1 — 8,
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Inequalities (3:8) and (3:10) can also be written as

1
{3:12) & =—
1—58" 4
and
(3:13) 8 =B
l — o

These incqualitios are of congiderable value in practical upplications,
since they furnish upper Bmits for « and 8 for given values of A and

B. For example, it follows from these inequalities that O
1 )
(3:14) o= N\
A « \J
and i '\"&
(3:15) 8 =B

= W
»

.- - '\:"\ + .
It may be of interest to represcnt graphivally’ the totality of all
pairs (a, 8) which satisfy the inequalities {3;1{;‘;’) and (3:13).  Any pair

8 o

¢ \;\ Fig. 9
(a, ﬁ),%a} be represented by a point in the plane with abscissa « and
ordiiaste 3. Consider the straight lines £; and L, in the plane given
Q?x the cquations
4

(3:16) ad =1 -—g
and
(3:17) =28 —a)

respoctively.  The line Ly interscets the abscissa axis ab o = (1/4)
and the ordinate axis at 8 = 1. Similatly, the line Ly intersects the
abscissa axis at @ = 1 and the ordinate axis at 8 = B. The region
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consizting of all points (e, 8) which satisly the inequalities (3:12) and
(3:13} iz the interior and the boundary of the quadrilateral determined
by the lines Ly, Ly, and the ccordinate axcs. This region is shown by
the shaded area in Fig. 9.

The inecualities (3:12) and (3:13) have been derived under the as-
sumption that the successive obscrvations zy, zg, - -, ete,, are inde-
pendent observations on =z The assumption of the independence of
the observations has been used in showing that the probabiity is one
thet the sequential process will eventually terminatet The rest of the
dorivation, however, remains valid also when the suceessive obsorfa-
tions are dependent, i.c., when the eonditional distribution of theth
obgervation x; iz affected by the outeome of the preceding obsdrvations
#y, +++, riy. If the successive ohservations arve not independent, the
probability that a sample (v, -+, z,,) will be obtainedg T, the joint
distribution of (xy, - --, %.), I8 no longer given Jh¢> the product
Floy, 83 Ceg, &) - - - fla, 8), but by a more general f!]n@ﬁi&l P21, 7y T )
Thus, in dealing with dependent observalions,® the null hypoth-
esis Hy will be the statement that the (.lis’jiﬁl‘mtion of the sample
(@1, -+ *, Zm) 35 given by some function pugth, - - -, #x), and the alter-
native hypothesis H; will be the statement that this distribution is
given by some other function py.(zpy - © ). We can construct the
sequential probability ratio test 'foﬁ}j;ésting Hy against 171 in the same
way ag for independent obscr}-ja,ijdns. That iz to say, we select two
constants A and B (B < A)and continue taking observations as long
as B < Mk\d. The first time that the probability

pom(&:l: BN j’x\}‘

' ratio DPrm/ Pom = AQOr = B, we terminate the sequential process. I,

is aceepted if fph;z;/'p'fm < B and II1 s accepled if pi,/pow = A. The
flmda.mental.'n\:e(iualitius (3:12) and (3:13) remain valid for such a test
procedure {My ¥pite of the dependence of thie suecessive observations,
provided&%ﬁ the probability is one that the procedure will eventually
termiﬁ;ﬁ-e. It can be shown that for a very general class of jeint dis-
fﬂ*ibu}ions Pom (@1, -+ 75 Tan) A0d Prao{s, - - -, 2m) the probability s one

gt the procedure will eventually terminate. Thus, the validity of
the inequalities (3:12) and (3:13) i3 by no means restricted to the case
of independent observations. They arve generally valid also for de-
pendent ohzervations.

A simple case of dependent observations ariscs when we sample from
a finite population. Suppose, for exumple, that a lot consisting of N
units of a manufactured product is submitted for acceptance inspection.

4 See Section A.1in the Appendix.



44 TIIE SEQUENTIAL PROBABILITY RATIO TEST

Lot 1 be the number of defoctives in the lot, which is assumed to be
unknown., To each defective unit we ussign the value 1 and to each
non-defective unit the value 0. Then the distribution of « aingle oh-
servation z is given by f(x, p) where f(1, P =p f0,p) =1~ », and
p = D/N. The suceessive observations are, however, not independ-
ent. For example, if 2; = 1, the distribution of aw is given by

D -1 s N
f(xg’\f—I)’ while if 21 = 0, the distribution of z, is given by

D
f (arg, —\;—I) . If we denote by d; the number of defeelives {t-he{lum—

ber of ones) in the set of the first ¢ observations £,
distribution of (¥, - -, 2,,) is given by 5

.,y st\lm jolat
{
NS
% N

(3 .18) "“z«
( D)f( D — dl)f< D — dg) ( ' D —dy )
P = {21, A N T, N — 3 ,‘{ Tons R

Suppose that the hypothesis 77, is that D ‘Q‘ equal to some specified
value Dy, and 7y is the hypothesis that D equal to some value Ty
(Dy > Dy). Then the distribution of (200 -, @) under ) Is given by

(‘3 ]9} f( Do)f( D'}';‘._' 21}1) f( D() - fz'.m.—l )
ol m = T, —— Tay o =) oo Ty 77 - -
o 1 N 2 N | ¥ ma 1
Dy~ O’-1)

(3 20) f( -Qr)\f( f( Dl _"dm--—‘l)
20) prw = Fl g~ fl 2, —— Ty S

i I\N g N -1 N—m+41
The sequential Qrbiiabi]it}f ratio tost for testing H, againgt H, is based
on the ratio, &/ Pom. Inspection continues as long us B < piom/Pom
< A, ’l‘l;e;.iot 1s accepted if pi,u/poe = B and the lot is rejected if
le_/p[;@é"fi. The fundamental nequalities (3:12) and (3:13) remain
Valirj. oy this test procedure in spite of the dependence of the obser-
}iaf,ti\siris.

and the distribution under Hy :By

§.3 Determination of the Constants 4 and B in Practice

Suppose that we wish to have a tost procedure of strength (a, 8).
Then our problem is to determine the constants 4 and B such that
the resulling test wiil have the desired strength (o, 8). Let us denote
by A{e, 8) and B{a, 8) the values of A and B, respectively, for which
the test has the required strength (@, ). The exaet determination of

5 This formuls is valid as long as dy 1 = D,
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the valies A{e, 8) and Bla, §) is usually very laborious.® Tlowever,
the fundamental inequalitics derived in the preceding section permit
an approximate determination of 4 and B which will suffice for most
practical purposcs. From (3:9) and (3:11) it follows that

1—5
(3:21) Ale, ) =
(&3
and
£ - |8
(3:22) Blo, §) 2 \
l —

We shall propose to put 4 = (1 — 8)/a = ale, 8), S{L}’,.Ebl'l(\i”'J\B =
B/(1 — @) = ble, §), say, and we shull investigate the canféquences
of this determination of 4 and B. From (3:21) and (.3(‘22'3 it follows
that the value afw, 8} chosen for 4 1= greater th:;l;[f\ér‘ equal to the
exact value Ala, 3), and the value B, ) choseno@ B is less than or
aqual to the oxact value Bla, 8). Then, lettingy¥l = afa, 8} instead
of A{x, 8) and B = bla, 8) instead of Ble, ;}\-‘ill, in general, change
the probabilities of errors of the first apd second kinds, It A were
put equal to a value greater than A{ehg3), and if B were put equal
to Ble, 8), then the resulting probability of an error of the first kind
would be less than o, but the pl‘obﬁb’i]ity of an ervor of lhe sceond kind
would be slightly larger than 33 8imilarly, if we were to use the exact
value A(e, 8) for 4, but a xae B below the exact value Ble, 8), the
resulting probability of aft }rmr of the seeond kind would be less than
8, and the pl'obabilit}\bf“an error of the first kind would be slightly
greater than o. THUs, if a value /A is used which is higher than the
exact value A(x'8) and a value B is used which iy lower than the
exact value B/ 3), it is not clear what the resulting effect on the
probabilitigd Wl crrors of the first and second kinds will be. Let us
denote B§’ and 8’ the resulting probabilitics of crrors of the first and
second fkinds when A = a{e, 8) and B = b{e, 8). From (3:12) and
(3+13) it follows that

O.” l 24
3:23 £ - =
(3:28) I1—g o) 1-8
and
(3:24) ] f ; = blay B) = - fa

8 The results in Section A.4 of the Appendix can be uzed for deriving arbitrarily
close approximations to the values A{a, &) and B(e, 8.
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I'rom these inequalities it follows that

(3:25) o < S
1—3a
and
(3:26) <P
(1 —a)

Multiplying (3:23) by (1 ~ 8)(1 — &) and (320 by (1 — a)(1 — &)
and adding the two resulting inequalities, we olitain

(3:27) o+ 5 Latp ~

Inequalities (3:25), (3:26), and (3:27) give valuable u pred Jimils for
o’ and @. The values « and 8 will usually be small in prnstical appli-
calions. Most frequently they will lie in the TARge ‘i‘};(;fn 01 to 06,
Thus, «/(1 — 8) and 8/(1 — «) will be very nem'l_\f.bqliul to « and 3,
respectively. It follows then from (3:25) and (3.:{2(?) that the amount.
by which o' may exceed a, or 8 may exceedh\BYE vory small and ean
be neglected for all practical purposes, Q.@‘ﬁover, (3:27) shows that
at loast one of the inequalitios o’ < « afid/3" = 3 must hold exactly.
In other words, by using a(a, ) anil e, B) instead of A(«x, 8) and
Bfa, §), respectively, at most ono of e probabilitics « and 8 may he
increased. )

Thas, wo may conclude: J#s use of afa, 8) and bla, 8) instead of
Alw, B) and Bla, B), respectively, cannotl resull in any appreciable in-
crease in the value of ea@q‘ a or 3. In other words, for all practical pur-
poses the test corresporiding to A = ala, ) and B = b (@, 8) provedes af
least the same proch%ﬁs% against wrong decistons as the test corresponding
to 4 = Ae, B) whd’B = B(a, §).

Our discusgioh’so far leaves still open the possibility that the usce
of a(w, 8) g\nﬁb(a, B) mstead of A(a, B) and B(x, 8), respectively, may
result m\a.n appreciable decrease of «, or 8, or both. If this were s0,
it would* mean only that the test corresponding to A = ale, 8) and
B 26{q, 8) would provide a botter protection against wrong decisions
”fh;mi the test corresponding to A = Afe, B) and B = B{a, 3). Thus,
he only disadvantage that may arise from using afw, 8) and ba, 3)
instead of A(e, 8) and Bla, 8), respectively, is that it may resull in
an appreciable increase in the number of obzervations required by the
test. In fact, since ula, 8) = A(e, ) and b(e, 3) = B(o, 8), the num-
ber of observations required by the test corresponding to A = afa, §)
and B = b(x, 8) can never be smaller than the number of observations
required hy the test corresponding to 4 = A(a, 8) and B = B(a, £).
Thus, if the increase in the necessary number of observations eaysed
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by the use of a(e, B) and bla, 8) inslead of A(e, 8) and Ble, 8) can
be shown to be only slight and of no practical consequence, the test
corresponding to A = afe, 8) and B = h(a, 3) serves the purpose just
ug well, and the determination of the exact values A(«, 8) and B(a, 3)
1 of little interest.

We shall now indicate the rcasons why the increase in the necessary
number of observations caused by the use of a(e, 8) and b{w, §) instead
of the exact values A (e, 8) and Bla, 8) will gencrally be only slight.?
The resson that (3:21) and (3:22) are inequalities instead of equalities
iz that the sequential process may terminate with py./pom > #1<ov
Prm! Pom < B. I at the final stage pim/pom were exactly equal Qo A
or 7, then A(e, §) and B{e, 8) would be exactly equal to (L B/ ct
and 3/(l — «}, respectively. On the other hand, o possihledexcess of
P1m/ Pom Over the houndaries A and B at the terminatién of the test
procedure is eaused only by the discontinuity of thegudhiber of obser-
vations, L.e., by the fact that the number of observ@tibns can take only
integral values, Thus, if fractional observation Jrera poasible, Le., if
the number m of observations were a cont-i_él}&o'us variable, P/ Pom
would also be a continuous function of m’}md consequently A {x, 8)
and Blw, 3} would be exactly equal to .a(é; 8) and b(e, 8), respectively.
That the mercase in the necessary nttmber of trials eaused by the use
of ale, §) and bla, 8} will generallyihe slight is strongly indicated by
the fact that the discrepancy }jaj'tm-:een Ale, 8) and ale, 8), as well as
that between Bfa, 8) and B, 8), arises only from the discontinuity
of the number of obselwr%ﬁgxs. In Section 3.9 we give upper estimates
of ihe increase in thdl¢xpéeted number of trials caused by the use of
ale, 5) and bea, §)A\Numerical computations given in that section
show that the incéuse is slight. It may be added that the nearer the
distribution f (& 1) is to the distribution f(z, 85) the smaller will be this
increase in ghévexpected number of trials, The reason for this is that
the neareeNf(z, 0;) is to flz, 6o}, the smaller the expected excess of
Pront ﬂﬁ,r;fzoxftzr the boundaries 4 and B and, therefore, also the smaller
the {iscrepancy between A{«, 8) and a(a, B} us well as that between
R(c:’, 8 and bla, B). i flz, 8,) approaches f{z, ;) the exact values
Afa, 8) and B(e, ) converge to a(a, ) and be, 4), respectively.

Hence, if experimentation is not excessively costly, for all practical
purposes the f{ollowing procedure may be adopted: If a sequential fest
is desired such that the probability of an error of the first kind does net
exceed «, and the probabiltty of an error of the second kind does not exceed
B, put A = {1 — g)/a and B = B/{1 — a} and carry out the sequential
probability ratio test as defined by the inequalities (3:1), (3:2), and (3:3).

* For a morce complete discussion see Section 3.9.
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The fact that for practical purposes we may put 4 = a(e, 8} and
B = b{a, 8) brings out a surprising feature of the sequential test a9
compared with current tests. Whercas current tests cannot be carried
out without finding the probubility distribution of the statistie on
which the test is based, there are no distribution problems in curying
out a sequential tost. In fact, a(w, 8) and bla, 8} depend on « and g
only, and the ratio Pim/Pom can be culeulated from the datn of the
problem without solving any distribution problems.  Distribution
problems arise in connection with the sequential process only if it is
desired to find the probability distribulion of the munber &% trials
necessary for reaching a final decision. But this is of segondary im-
portance as long as we know that the sequential test of ‘¥he AT erage
leads to a saving in the number of observations. . O

3.4 The OC Function of the Sequential Probab\i]ity Ratio Test ®

Since the sequential probability ratio testfepesting the hypothesis
/Iy against the hypothesis H; will be applied {0 problems when the
parameter ¢ can take values 7 and 3‘\2 @y, il ig of interest to derive
the whole operating characteristic fotetion L(g) of the test. For con-
venicnee, we shall treat the ease of\a single tnknown parameter 4 in
this section and in Seetion 3'.5;'j~"1"he results can be extended without
difficulty to any number of {parameters. In Seetion 2.2.1, f.(¢) has
been defined ag the probability that the sequential process will termi-
nate with the acceplangs of 7, when 8 is the true value of the param-
eter. In this section(3¥é shall indicate the derivation of an approxi-
mation formula foh % (@), neglecting the exeess of P/ Pom Over the
boundaries A zfd B at the termination of the process. A rigorons
derivation (sifig a different method) fogether with upper and lower
limits for $eOC function will be given in'Section A.2.3 of the Appendix.

Cons{d"g\f the expression

N\ f(z, ;) 7H®
3:28) i
(. 3') [f (=, 60)]

\/ For each value 6, the value of A(0) is determined so that k(8) = 0
and the expected value of the expression (3:28) is equal to 1, ie.,

L x, 6;)° R
(3:20¢q) f L%;—g;—J fle, ) de =1
-= [RL)

? As mentioned in the Introduction, the operating charncteristie function for the
speeial vase of a binomial distribution was found by Milton Friedman and George
W. Brown indepen dently of each other, and slightly earlior by (. M. Stockman i
England. The derivation of the OC funetion in the goneral ease is due to Lhe author
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if f{zx, 8) is the probahility density function, or

(3:200) 2 [? Ef g]?ﬁg}f@, B =1

it © has a diserete distribution (the summation is taken over all pos-

gible values of 2). It is shown in Section A.2.1 of the Appendix that

under zome slight restriction en the nature of the distribution function

S, 8}, there extsts exactly one value A(8) # 0 such that (3:29) is fulfilled.
Ilence, for any given value §, the function of z given by

3:30 *(z, 0 {fﬁ%go]mm g )
(3:30) S*(x, 6) P Sz, 6)
iz a distribution funection.

Since &) # 0, there are two possibilities: 2{8) > Oor h(ﬂ) 0 We
shall first consider the case when h(6) > 0. "

Let H denote the hypothesis that f(z, ) is the tmq dl-,tnhutlon of
x and 7T* the hypothesis that f*{x, 8) is the trde’distribution of x.
Congider the sequential probability ratio test S ¥or testing I7 against
H* defined as follows: Continue taking (Jbsc{{r@iz}ns as long as

S, 6) - f*(_@”m: ) < MO

N

.'\"\

3:31 RO - T
( ) j‘m'l} G) J{mer 8) .
Accept the hypothesis A 1f .;fg" (P
(3:32) f*(M*(Q”“’ ) < RO

f(l'l.;“ (xm: 6)

Reject the hypothcbls XQ{accupt I if
SPEL0) [ ) g

3:33 R/, ,
é. ) \\ Fxe, 8) - f(T 6) P
;n;: \:\ =(x, 8) B l}f(x} BIJJJA(G)
o 3:\ Jiw, 6) S, Bo) N~

and si?ncc h(g) > 0, the inequalitics (3:31), (3:32), and (3:33} are

e‘t}.gWaIent to
f(f?!]; 81) t ' .{E?m; Gl) < A

% B < — -
( 30) < f(TIJ 80) e fL-er 60)
f{il 01) Tt f(xm; E’1) <
3:36 = . =R
(‘g ‘3t) f(ﬂ'[, GU} ntT f(xm; 90)
and e 9){(1’ 9)
(3 3?) f[:‘{-ly 1 ) Jhlpne U] g A

Jr(:vlr 60) T f[xm; 80)
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But these incqualities are identical with those defining the sequential
probability ratio test S for testing 17, against 77 1, when the constants
A and B are uzed. Thus, if the test $* leads to the aceeptance of f7 ,
the test S leads to the acceptance of Hy, and it $* leads to the rejection
of JI, then S also leads to the rejection of Hy. I'rom this, it follows
that the probability of accepting /7, when 8 is true, ie., the value of
L), is the same as the probability that the test §* will lead to the
acceptance of H when flz, 8) is the true distribution of .

To caleulate the latter probability we shall apply the lormulas (3 9
and (3:11) to the test procedure §%,  Denoto by o the probability that
S* will lead to the rejection of /7 when A is true, and Iy 5 theMprob-
ability that S* leads to the nceeptance of H when I7* is t-]‘tre,\,\’:kpp]y—
ing the formulas (3:9) and (3:11) to the test procedure SEWe obtain

ool

R gy a\ )
R 4 Al . +$7)

(3:38) 4 = " . ."‘;\\'
and Y

PN

a.9¢ 0] Ry

(3‘30) B % qu‘M

A \ N/ S

When the excess over the houndayies at the termination of the proc-
css is negleeted, the equality sigayiolds in (3:38) and (3:39), that is,?

sr:; 1 — 3
(3:40) FOLCPNILA
o~ 4
and ‘\
N\ ,
(3:41) BMO
O~ l—a ™

From (3 40\1)'\&1’1(1 (3:41) we obtain
AN\ A

(3420 o~

&)

Ah(ﬂ)”_ Bh(’fff
~O
\%mcc o' =1 — L(#), we got

AR® _ (

(3:43) Lf) ~ WW

The case A(8) < 0 can be {reated in a similar way. We obtain the

same result, i.e., the approxmation formula (3:43) remains valid alsoc
when A(8) < 0.

* The symbol w~ indicates an approximate equality,
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It is inferesting to note that A(fy) = 1 and A(#,) = —1. This fol-
lows casily from (3:208).

As an illustration, we shall determine L{#) for the binomial cass when
2 can lake only the values 0 and 1 and the distribution f{z, #) is given
as follows: f(L, &) = 8 and f{0,6) = 1 — #. Then cquation (3:285) can
be written as

6 L)) 1— 8 ki)
Sl ot — 1 -8 -- = =1
(3:44) (90) + =6 (1 - BU)

To plot the OC function, it is not necessury to solve equation (3:44
with respect to A(f). We may consider & = A(f) a parameter and solve

(3:44) with respect to 8. Then we obtain O\
NS
i— Bl A Y \/

1—{- ~\

. 11—t P \

(3 "1‘)) b= (Bl)k (1 _ Ul)fa "Mt\\’
Ba 1 — 48 ,'\\;

If we let 4 = (1 — B)/aand B = /(L — aJ{\(3%13) can be written as

3
w4

1u,s,>kf,_:1

AV
{3:46) L) ~ T

g A .
e 1 —a
2“’$\ . .

Tor any arbitrarily clu%@»?alue h, the point [0, L{#)], computed from
(3:45) and (3:46), will b# a point on the OC function. The OC fune-
tion can be drawwyby plotting a sufficiently large number of points
6, L] correspcirid\Iﬁg 10 various values of k.

A typical i(g\‘('i}function for the binomial case is shown in Fig. 10.

Oz
~" 1

~G

\;

g, 10
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We shall now compute L({#) when = is normally distributerd with un-
known mean ¢ and known variance ¢2. In this case we have

— 5 e

f (T ‘9) \/a
The quantity k(8) is the non-zero root of the equation

tu 1 g2 L im— it —|.1{H)
1 _ L aomt|e | -
3:47 — —e ¥ —- de = i &0
(3:47) e V270 ——’,Lx ﬁJ . o
€ D)
’\
Evaluating the above integral and solving the (,(llla,LllJll with respect
to h{#), we obtain o\
8 + By — 20"‘\"
(3:48) h(f) = — —
By — oy

K1)
An approximation Lo the OC funetigfisobtained from (3:43) hy sub-
stituting (6 + 6o — 28)/(8; — 90).&;51‘ (D).

3.5 The ASN Function of &Sequenual Probabhility Ratio Test

Let n denote the numbvr of observations required by the test and
let Eg(rn) be the expeeddd value of » when 4 is the true vahic of the
parameter. Thisg exp& tted value £s(n) Is a function ol # which we have
called the awv (\Laéc\sample number funetion, or briely the ASN fune-
tion, In thig Gletion we shall outline the derivation of an appr oxia-
{ion formul& fm the ASN function, neglecting the exeess of DL Pom
over thé\l.'!()lln(ldll{‘ A and B at the termination of the sequential
process) A more eomplete discussion together with upper and lower
limiﬁ for the ASN function is given in Section A.3 of the Appendix.
\~.Let N be an integer sufficiently large to allow the probability that
“n z N to be neglected.® Thus we shall assume that n < N, Then
we can write

(349) @+ A2y = (@ A F 2 + (Gagr oo FEw)
where
(3:50) 2 = log f gi?iay 6}

f(xa, 80)

10 Tt iz shown in Section A.3.1 that no error iz involved in assuming this, since we
pass to the limit when N approaches .
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Taking expected values on both sides of (3:49), we obtain
(3:51) NE@) = B+ -+ 2) + Elzaga + -+ 2w)
where

(3:52) s = log 5%

"8 1, 60)

Since, for & > n, the random variable 2, is distributed independently
of n, the expected value of znyt +--+ 2x is equal to the expected

value of (N — n) times the expected value of a single 2, Le, A\
@53) Bty ++-+2x) = BN — nE@) = NE@) — EmEQ),-
From (3:51) and (3:53) it follows that O ’
(3:54) By e ) — B@EG =0 )

Hence o \\

(3:55) By = 2 ;@jﬁ\ )

if B(z) # 0. L

If ¢ is the true value of the parameter, $hen E(n) = Eg(n) by the
definition of the symbol Ey{n). We s}l’al’l. dencte by Eg(z) the cxpected
value E(z) of 2 when 4 is the true value of the parameter, 1f the excess
ol the probability ratio prm/ :Dnm.bétei" the boundaries 4 and B at the
terminstion of the sequential ,p‘rocéss is neglected, the random variable
(21 +--++ 2x) can t.ake’gnly the values log A and log B with the
probabilities 1 — L(f) z},@l‘i}(ﬁ'), respectively. Tlence

{3:56) E{z +- :.-.fjb.’z.n) ~ L logB + [1 — L(#)]log A
P
From {3:53) agd\‘(}}‘ﬁ(_'}) we obtain the approximation formula

N\
' \ L(8) log B — L{®)]log A
(3:57) A B _L@logB A1~ L@)]logd

Qo'o Ea(z)

In\t:ﬁc preceding section we have computed explicitly the formula
L(}B Tor the binomial and normal case. Thus, to obtain the explicit
formula {or Eg(n}, we need only compute Ey(z). In the binomial case,
i.c., when f(z,8) = 6 forz =1 and f(z, 8) = 1 — 8 for z = 0, we have

i = Jff jﬁ@] = f_(,l_@_ _ f(O, 91)
B:58) 7o) = B [logf(ﬂ?; Bo) B elogf(l, 8y} ta-9 Iogf(o, fo!
1 — 8,

th
= ¢log— + (1 — & log-
o ( ) gl—a,,
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In the normal ease, i.e., when

1 - —1 (z--0)%

] .',,8 = — e g doF

J(x, 8) N
we have .

Fla, 01) 1 .

(3:59) z = 103}@_61—)' = %2 (200, — 0,).0 -1 th” — 0,7

PR
Henee,

1 _ N .
(3:60) By(z) = 2—2 (208, — 000 + By~ — 8,7] i "\
28

N

oA\

3.6 Saving in the Number of Observations Effected bx\iie Use of

the Sequential Probability Ratio Test instead ,'t;‘fs’the Current
Test Procedure A 4

€

In this seetion we shall assme that 77 1y Lh’é)l}'pothmis that the
random variable 2 under consideration s nwdhally distributed with
mean 0y and variance unily, while & 118 e hrpothesis that o s nor
mally distributed with nean &, and \'LLI’i’iJ}LC(z unity.  We may assume
without loss of generality that oy A E[ Wea shull compare the ex-
pected number of observations reqired by the sequentisl probability
ratio test of strength (@, 8) foxNesting /7, agamst &, with the fixed
number of observations needéd for the current most powerful test to
attain the sume strength 4Q) 8,

We shall denote by(le, 8) the fised number of observations re-
quired by the enrret test to attam the strength ( a, 8). The current
most powerful test procedure for testing My against £7; is earried out
as follows. Thebypothesis H, is accepted if the arithmetic mean 2 of
the observations Zy v @, (the number n of observations is deter-
mined J'.n\'a:ﬂ*;'ﬁnce) ig less than or cqual 1o a preassigned constant o,
and {I{{\lﬁ rejectod (/f; is aceepted) i & exceeds . The constant d
and.theé fixed number 7 of observations are to bo determined so that
the test will have the required strength (o, 3). Tor any given # and d

ﬁle corresponding strength of the lest can he determined as follows.
Since £ £ dis equivalent to the inequality v/n(z — 8,) < /n(d — ),
the probability that z =d 15 the same as the probakbility that
Vn{E — fo) = Vnld — fio). The random variable y = /n(f — &)
1s normally distributed with mean 0 and variance unity if B, is true.
Thus, the probability that 7 = d when 1y is true, ie., the probability
that we shall aceept Ho when H, ig trae, is equal to the probability
that ¥ < v/n(d — ;). We shall denote by () the probability tha.
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a normally distribuled random variable with mean 0 and variance
unity will take a value Iess than 4 i,

1o
[

3:61 G = ——- 2

Then the probabilily that we shall accept Hy when I, is true is equal
to Glvnld — 8)]. Since the probability that we shall aceept Hy when
Iy is true 18 1 — a by definition, we have

302) Cinv/nld — 8] = 1 — a ~

To determine the value of 3 corresponding to given n and d, wesghdll
write the inequality Z = d in the equivalent form +/n(Z .{FS =
vn{d — 0). By definition, 8 is the probability that we shal aceept
Hy when H) is true. But the latter probability is the(giine as the
probability that = d, i.e., that /2@ — 81) = /n(d '£%8)), when H,
istrue, But when £ s true this probability is cqualio Glv/z(d — 61)].
Thus, we have \

) AN
(3:63) GIN'nld — 81)] &

Henee, to obfain a test of the requirad k‘tltngth {e, 8), we have to
choose the quantities n and d so0 thabeqm’mmq (3:62) and (3:63) are
fulfiled, Let Ay be the value fOT‘.?j\hth G} = 1 —a and let Xy he
the value for which G(x) = 8. ""17',1‘16 values Ap and Ap can be obtained
from a table of the nornml“‘dist’rlbution. Then equations (3:62) and
(3:63} can be written as .\

(3:64) SVt — 00 = n
and y ; 4
(3:65) ,\:f.:\ T V=8 =N
Subtrac tlmatluatlon (3:64) from equation (3:065) we obtain
(3()())”" Vilfo —0) = M — Mo

ﬁ‘aﬂ o !

1~ Ao

(3:67) n = nla, §) = m

If this expression is not an integer, n(a, 8) is the smallest integer in
excess,

We shall now determine the expected number of observations re-
quired by the sequential probability ratio test of strength (e, 8) and
we shall compare it with the fixed number n{a, 8} of observations re-
quired by the current test as given in formula (3:67}. In the sequen-
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tial test we shall use the approximation formulas for A and B, ie,
we shall let A and B equal {1 — 8)/« and 8/(1 — a}, respoctively, in- .
stead of the exact values A(a, 8) and B(a, 8), respectively. It has
been shown in Section 3.2 that (1 — 8}/a = Afe, 8) and 5/(1 — &)
= Ble, 8). Thus, by letting 4 = (I — 8)/a and B = 8/(1 — o) in-
stead of using the exaet values 4(a, 8) and B{a, 8), we can only in-
erease the number of observations requircd by the scquential test.
Consequently, the saving effected by the sequential test of strength
(o, 8) as compared with the current test cannot be smaller than the
saving which results from the sequential test obtained by uging the
approximation formulas 4 = (1 — 8)/«w and B = 5/(1 — a)

Wea shall assume that | 8, — 8, | 1s small so that the aRpmumahon
formula {3:57) for the expected valuc of % can be used™ Since L{dy)
=1 — aand T.(8;) = 8, we obtain from (3:57) .8 ™

BlogB+ (1 — 3) lﬁb’\:’I'

(3:68) Bin) =27 T v %
‘ Bi5)
and g\‘\
1 - logBNt alog 4
(3:60) Byl = ) ogET alo
Fo (z)

where E,;(n} denotes the expecteclvalut of n when His true ( = 0, 1).
As can eagily be verified, "v.’;

(3:70) B = 30 — 8)?
and \\i
(3:71) “ Ey(z) = —5(8 — 8%
From (3:674;1(% 68), (3:69), (3:70), and (3:71) we obtain
11(’*’1) 2
(3: 721\ - - —- 5 [Blog B+ (1 — 8) log Al
™ n{a, ﬁ) (A1 — Ag)?
o~\\' “..' 2
NB:73) o) _ (1 — ) log B — alog A]
nla, B) (7\1 - Ao)? :
- " . ) Eo(n) .
It is interesting to note that the ratios and are inde-

nla, B) n(a, 8)
pendent of the parameter values 6y and 8,. The average saving of the
E\(n)
sequential test ag compared with the current test iz 100 [1 — _(l_ﬁ)]
nlo
laln
per cent Hf A, is true, and 100 [1 - —'--0( ))] per cont if Hg is true,

n{a,
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1,

)—] , and panel B

ni{e, 8

In Table 1, panel A shows the value of 100 [1 —

shows the value of 100 [1 — = Boln)
ﬂ*(a; »8)

Beecause of the symmetry of the normal distribution, panel B is ob-
tained from panel A simply by interchanging o and §.

] , for several values of « and 8.

TABLE 1

AVERAGE PERCENTACE SAvING IN Sz 0F SAMPLE wITH SEQUENTIAL AN&LY.SI"\
A8 Comparep WiTE Current Most PowrkrULl TEsT For TrsTING MEAN

or 4 NormalLy THSTRIBUTED VARIATE ()
Z .\.
N
A. When alternative hypothesis is true: p .,’}‘
N
<_ = D
\ o | 0z ] 03 | 0t (05>
IB .
N

.01 58 | 60 | 61 | &2 63
.02 54 56 57 }3

.03 51 | 83 | s 0p85 i 56
.04 49 § 80 |8l | 52 ;
.05 47 | 49440 | 50 | &1

O3
ad
N

B. W*hQu null hypothesis iz true:

S _
.01 02 .03 .04 03

- — —— | —_———— /"
A . 58 | 54 | AL | 49 | 47
\:\ 02 | 60 | 36 | 53 | 50 | 49
« 02 | 6L | 57 ! a8t | KL | 50
™ 04 62 53 55 52 50
A o5 | 63 | me | 85 | 83 | 51

&\ "4 r |

Q

As the table shows, for the range of a and 8 from .01 to .05 (the
range most frequently employed), the aequontlal test Tesults in an aver-
age saving of at feast 47 per cont in the necessary numbet of observa-
tions as compared with the ewrent tost. The true saving is slightly
higher than shown in the table, sinee Ey(n) 2 = 0, 1) caleulated under
the condition that 4 = (1 — 8)/a and B = 8/(1 — a) is greater than
E{(n) caleulated under the condition that A = A(a, f) and B = Bla, 8).
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3.7 Lower Limit of the Probability That the Sequential Test Will
Terminate with a Number of Trials Less Than or Equal to a
Given Number

In Seetion A6 an approximate formula ! for the probability distri-
bution of the number of observations requived by the sequential test
. . . . . flr, 60) . .
is derived in the case in which 2 = h)g.,r'.f-i- o) 1= normally distriboted,

Wb
[t is pointed out that the same distribution [unetion of % ean be
regarded as an approximation to the exact distribution even €hon z
is not normally distributed, provided that the abmolute valpe of 7(2)
and the standard deviation of z are sufficiently =mall as cpn\{]}:ﬁed with
log 4 and log B, Although the distribution of » glvengineBection A.G
could be used to detormine the probability that n =0 for any fixed
integer ng, we shall prefer to derive n lower Iilnit'\f'&{f this probability
by a different method for the following rensong.N (1} The computation
of the lower limit given in this =eetion is vem® wimple, whereas the use
of the distribution function given in Seatiolr 2\.6 would require labo-
tious computations, sinee that dist;ributi‘n}l funetion hus not. vet boen
tabulated, (2) If ng is [aidly la.rge'aiid'ﬂ' e sqnl 8 e smaldl, ag they
usually are in practice, the 1{'}\\-‘@1&}3:’31111(.1 given in thiz gection will be

*

fairly near the exact value. o

For any given positive intedgt lot /,(n = np) denote the probability
thal = £ ny when I/ is Mfite, i.c., when § = 6, (1 = 0, 1).2 We want
to derive & lower bom}gl"fbr Pidn = ny). 1t will be wssamed that ng is
sufficiently large SO’\t\hd’t the sum 2 +- -4 z,, muv e regarded as
normally disti‘ibkltl;ad even when the distribution of 2 i not normul?

Ty £

If Zza :;,\10;3? A, then we certainly have n £ ny.  Similarly, if

=]

o y
zd):"z\\og B, we must have n £ ;. Hence

a=184"

N ’ ) Tn
%3\274) P Zza = log A) £ Pi(n = ny)
and o
(3:75) Po( ) 5108 B) £ Poln < g
a=1

 Bee formulas (A:166), (4:188) and (A:194).

¥ In general, for any relalion B we use the symbal Py(&) (o denote the probability
that B holds when I7; is truc.

1 According to well-known theoroms in the theory of probability, the sum of a
large number of independent random variables is nearly normally distributed under
very general conditions.
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i

The incquality E zx = log 4 ean be written as

a=1
Zza — npf(2)
(3:76) a=tl L log 4 — nolni(z)
gy (2) - N2

where ¢((2) denotes the standard deviation of z when H, is true. The
left-hand member of (3:76) is normally distributed with mean 0 and
variance unity when f/y is true. Tor any value A we shall denote I3
('(\) the probahility that a normally distributed random variablgywith
mean G and variance unity will take o value less than A lhu\r\the
probabilily that such a random variable takes o value 2 A ls\ﬁl\ en by

1 — G(x). Tlence the probability that (3:70) holds “hemﬂg 15 true is

equal to 1 — G{A (ng)] where

.n\"
log A — nuk N
(3:77) M(ng) = log 4 — nok(2) »

'\/??_001. “) \
But the probability that (3:76) holds nheq ~Hl is true is cgual to
PyiZz, = log A). Thus,

no

(3:78) Pi(D zazlog AT — 6Dy ()]

a=1 }
e

Beeanse of (3:74), we obtajn
1 i@fﬁl(%)] = Pi(n < np)

Thus, 1 — G (ne)Ns & lower limit of the probability that » =< ny,
when Iy is true, 05
To ohtain 3 *1.\10\\!@1* limit for Poln £ ng), we rewrite the inequality

KiiH

Zz{, = @B in the form

w1
AN i 3
a\Y4 B — nUEU(")
} - log B — nplo(2)
O < 8 0B _ s omg), say

"‘\/ﬂ_oo‘u(z) - v 1oy (?)
where ao(z) denotes the standard deviation of 2 when Ho 1s true. Since
the left-hand metmber of (3:78) 1 normally distributed with mean 0
and vaviance unity when Hj is true, the probability that (3:79) holds
when Hy is true is equal to G[a(ne}].  Hence,

ny

(3:80) Po(D_pa = log B) = (lho(no)]

a=1
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Because of (3:75), we then have
(3:81) Glro(no)] £ Poln £ no)

Thus Gfra(ne)] is a lower bound of the probability that n £ ng when
Iy is true.

When log 4 = log {1 — 8)/a and log B = log /(1 — «), Table 2
shows the values of the lower bounds of Py(n = ny) and Pi(n = ny)
corresponding to different pairs («, 8) and different values of ng. In
these caleulations it has been assumed that the distribution under Hy
ig a normal distribution with mean ¢ and variance unity, and tledis-
tribution under f7; is a normal distribution with mean # and.vaviance
unity. ¥or each pair (e, 8) the value of # has been detershingd from
(3:67} so that the number of observations needed [or L'hc‘ Grrent most

S

powerful fest of strength (a, £) is equal to 1000, N

TABLE 2 o

Lowen BoTnp oF THE DPHROBABILITY THAT A S}TQL‘EXTIAL ANavyss WL
TErMINATE WITHIN Varmous Numsers orF {Paihis, woen otz Most
PowurroL Currest TesT REQUIRBSLEXACTLY 1000 TRIALs

G

| ._ O |
a=.land g = .01 || o ;:f')il and 3 = .05 | @ = 05and 8 = .05
Number - * 1
. 1c3f J\lt.(-_'-l'llii- Nulll Alt‘cr'rm— Null ;'\lt.ernfl— “ull
Trals Live N\, tive . tive :
. hypetbeslsi . | hypothesis . | hypothesis
hypothesis| 28 3 hypothesis hypothesis
& itrae ) true . true
true e\ truc true
1000 KLy 910 799 801 773 773
1200 | (2950 950 871 w32 | 837 887
1400 \\ ;) .a72 L2 L9186 4957 ihn JKBR3
1600 %" 985 085 | 946 972 915 015
13008 .901 091 | 965 082 .U38 .038
~ :2“000 995 L9995 977 L9849 L1355 L0ak
\ 12200 997 997 LOR5 L9493 LOGT 067
2400 L899 999 490 .945 76 76
2600 LG99 L9800 ) L9394 .897 L0582 .82
2800 1.00 1.0 : a6 LU8R 87 LO8T
3000 1.00 1.00 997 L8958 L0990 . 980

The probabililies given are lower bounds for the true probabilities. “They relate
to a test of the mean of a normally distributed variate, the difference between the
null and alternative hypothesis being adjusted for cach pair of values of « and 8
s0 that the number of trials required under the most powerful current test is cxactly

1004,
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8.8 Truncation of the Sequential Test Procedure

Although it is shown in Scetion A1 that the probability is 1 that
the sequential test procedure will eventually terminate, it is occasion-
ally desirable to set a definite upper limit, say no, for the number of
observations. This can be achieved by truncating the sequential proe-
ess at B = Mg, 1.e., by giving a new rule for the acceptance or rejection
of Hy ut the ngth trial if the sequential process did not lead to a final
decizion for n < ny. A simple and reasonable rule for trunecation at
the moth trial seems to be the following: If the sequential probability
ratio test doos not lead to a final decision for n = ng, accept Ho ab thes

np L
apth irial when log B < Ezu < 0, and reject Hy when 0 < Zz;\<
a=1 £3n “

log A. A\
By truncating the sequential process at the noth trial washall, how-
ever, change the probabilities of errors of the first and wecond kinds.
Let « and 3 be the probabilities of errors of the firstiand second kinds
if the sequential test is not truncated. The eficdt’ of the truncation
on o and 8 will, of course, depend on the va dc.\of ng. The larger ny,
the smaller will be the effect of fruncation O & and 8. We shall denote
the resulting probabilities of errors of (the'first and second kinds by
a(ng) and B{ng), respectively, if the sé@uent-ial process is truncated at
#n = ng. In this section we sha}lz’déi‘ive upper bounds for «{ng) and
Blro). N

To obtain an upper bounthfer a(ny) we have to consider the cases
in which the truncated pfoddss leads to the rejection of Hy, while the
non-truneated proces:s\le ds to the acceptance of Hy  Denote by
solng) the probabilifgrunder Hy of obtaining a sample such that the
truncated procesdJedds to the rejection of Hy, while the non-truncated
process lcadsl\ﬁ{}thc aceeptance of IIo. Then, we elearly have
(3:82) N alne) £ @+ polno)

The,zgéa’s"on that in (3:82) the inequality sign holds instead of the

{Uality sign is that there may be samples for which the truneated
Iej%éess Jeads to the acceptanee of Hy, while the non-truncated process
leads to the rejection of Hy. To obtain an upper bound for a(no), we
merely nced to derive an upper bound for po(ne). DBy definition,
po{ng) is the probability under Ho that for the suceessive observations
4, #s, -+-, etc.. the following three conditions are simultaneously
fulfilled:

ki
(z) log B< v < logd formn=1,---,n—1

a=1
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T
(44) 0< E z, < log A
w=1]
(777} When the sequential process is continued beyond ny, it termi-
nates with the acceptance of I7,.

Denote by ,50(1:"1.0) the probability under Hy that condition (45) will
be fulfilled, i.e.,

na
(3:83) Fone) = Po(0< D 2. < log A)

a=1 2\
Since the probability that condition (¢) is fulfilled cannot J{( smaller
than the probability that all three conditions are ulf.Ile‘mmultfuu—

ously, we have W\

Bolre} 2 polrp) PR 3
and, therefore, ’m"\g.’
(3:81) a(ng) = a + po(ng)

Thus, o 34 ps(ng) 15 an upper bound fg)r‘,%fno), which ean casily be
computed, as will be shown later. JJ@ Obtuin an upper bound for
Bing) we shall denote by py(ny) the’plbbml)ilitv (under 771} that the
successive observations will be ‘-\l’l('h that the truncated process leads
to the acceptance of 77y, while: $he non-truneated process leads to the
rejection of Hy. In othor \’vmds, p1(no) 1s the probability under 77,
that the successive ob%( prations will satisfy the following three condi-
tions c:1multaneoufaly 2\

S \n"’:
)] IogB< E 2. < logd forn=1,+--,m5 — 1
¢ A\ \ a=1
xt\w o
(i) OTog B 2, =0

(u{i) If the process is continued beyond the ngth trial, it ferminates
7 with the acceptance of H,.
N\ Clearly

(3:85) B(ne) = B + pilng)

Sinee it Is difficult to determine the value of p1{ng), we shall derive

a simple upper bound for it. Let 5,(ny) be the probability under I7;
that condition (%) is fulfilled, i.e.,
o

(3:86) p1(ng) = Pi(log B < Zza <0)

a=1
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Then p1{ng) = p1(ng) and we have
(3:87) B(ng) = B8+ Filng)

We shall now show how gg(ng) and i (ng) can be computed. We
shall assume that g is sufficiently large so that 2, 4-- - - -+ 2, may be
regarded as a normally distributed variable. When X, is true (f =
0, 1) the expocted value of 2y 4+ 2y, is equal to npEi{z) and the
standard deviation of z( 4+ - - 2,, is equal to 4/ngei(7) where o{2)
denotes the standard deviation of z when H; i3 true. To comput{g\
g 4
Folng), we shall write the incquality 0 <Zz“ < Jog A in the fqllo\w-
- ¢\

=1

. 8
ing form: O

__ﬂ‘UED(z) z1 4+ Zng — ?’LUED(Z) ]05_,“ A 7(?‘;(]&'0(3)
3:88 — & — ! S £
( ) v oo (e) A ngeulz) 'A{Qﬁﬂo (z)
Leat »

—fpdiplz iy & A \gin Fo (2

(389) _.??Urg( )— and vy = _n {A ﬂg D( )

T Vna(e) 3 Faro(2)

Since the middle term in (3:88) is normally”distributed with zero mean
and unit variance when Hyp is truey fh}'l(:"probability that (3:88) is ful-
filled when Hyg is true is equal to vag) — G{p1) where (/(») denotes the
probability that a normally distributed variable with mean § and vari-
ance unity will take a x?a.1u§< ». Thus,

(3:90) 3 lne) = G) — GO
To compute 51(?'1}05‘, we shall write the inequality log B < Zza = (
"\“' =1

in the foll \viﬁ;é;’fol'nl:
iod |
Yoz B — mf (&) a4t 2 — nol1(2) - —nplny ()

S Ry 1@ = Vigor@) -
Lo/

(3:92)

_log B — nol(2) e = el @)
BT g () A g (E)

Since the middle term in (3:91) is normally distributed with mean 0
and variance unity when Hy is true, the probability {(under Hy) that
(3:91) holds is equal to G{vs) — G{rz). Hcenee,

and

(3:93) ilng) = Glrg) — Glua)

L.
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Our results can thus be summarized as follows:

(3:94) alng) £ o + Glve) — Gloy)
and
(3:98) Blng) £ 8+ Glg) — ({ra)

where »q, va, v3, and p; arc given in (3:89) and (3:92), These upper
bounds may considerably exceed alng) and B(ny), respeetively, It
would bhe desirable to find eloser limits, O\
Table 3 shows the values of the upper hounds of a{nﬂ) aml Blng)
given in (3:94) and (3:95) corresponding to different pw% (a. 8) and
different values of ng. In these caleulations wo hft\:( put log A =
TABLE 3 R4

Errecr on Rizks or ErrRoR OF TRUNCATING MNSEQUENTIAL ANALYSIS
47T A PREDETERMINED N‘E.’MBF\]\,;‘_)F TrRIaLA

~ :
=0land g =.01 || o= OGN B = 05 || a = D5und g = .05
Number v‘:.’ N
of Tpper Upper 4 S Upper Upper Upper Tipper
Triuls hound of | bound ofy[ bound of | bound of | bound of hound of
effeetive | effective || offective | effective :| effective | cffective
ey ,{“‘}3 & 3 73 3
R ;\\\” ] I L
1001 020’ 020 033 070 L0835 095
1200 pnj g .5 024 063 | L(R2 (082
1400 x\.013. 013 .01 058 |1 .072 .072
1603 ANV .012 012 016 LOh5 : 066 066
18 \'" Ol 011 .014 053 [ .062 062
2001} 010 010 .012 052 058 058
22[50 010 010 .012 JORL 056 .056
’”\ 2400 .010 010 011 L0581 055 055
) 2600 010 .010 .011 051 | 053 .053
2800 010 P 010 010 L0500 | 033 053
3000 .010 ]. 010 .010 080 4 082 .052
|

If the soquential analysis is based on the values o and # shown, but a decision
is made a4 ny irials even when the normal sequential criteria would require a con-
tinuation of the process, the realized values a(n) and 8(ng) will not exceed the
tabular enfrics. The table relates to a test of the mean of a normally distributed
variate, the difference between the null and altornative hypotheses being adjusted
for each pair (e, #) so that the nuraber of trials roquired by the current test is 1000.
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log (1 — 8)/a and log B = log 8/(1 — «), and assumed that the dis-
tribution under Hy is normal with mean 0 and variance unity, and the
distribution under H; is normal with mean 6 and varianece unity. For
ench pair (e, 8) the value of 8 has been determined so that the number
of observations required by the eurrent most powerful test of strength
(e, B} is equal to 1000,

Tt seems to the author that the upper limits given in (3:94) and
(3:95) are considerably above the true alng) and 8(mg), respectively,
when ng is not much higher than the value of # needed for the eurrent
mogt powerful test. ’

3.9 Increase in the Expected Number of Observations Cal,ls\é&"hy
Replacing the Esact Values A(a, B) and Ba, B} by L =~ B)/a
and B/(1 — o), Respectively N

The quantitics A(x, 8) and Ble, §) denote the valu&\ of A and B
for which the probabilitics of crrors of the first andh\debond kinds asso-
ciated with the sequential probability ratio tggbtafc exactly o and 3,
respectively. In Section 3.3 it has heen {@Q@Jﬁmended that A{a, B)
and B(a, 8) be replaced by ale 6) < (¥ — 8)/a and ble, 8) =
8/(1 — a), respectively. This may sljgitgly:mcrea.se the expected pum-
ber of observations, sinee a(a, 8} 2% (e, §) and Be, §) £ Bla, B4
The present section gives estimafes of the amount of such increase in
the expected number of obsesfations.

In Scetion 3.5 the follg“wﬁhg approximation formula has been ob-

tained for the expected humnber of observations;

@ L log B+ — L®)]log A
3:96 ) e ————— T~ _
(3:96) '"\.;fa( ) T
Since L(E?ﬁ’)\= 1 — « and L{() = 8, we obtain from (3:96)

)

m* N (1 —a)logB+ologd
3'97 Fol) m o
( ) o{n) Fol2)
and
z glog B+ (1 -._—i)logA‘
(3:98) 1(n) ~ TG -

- E,(n) denotes the expected value of 7 when &; 1s true.

1 8ep incqualities (3:21) and (3:22}.
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Thus, the changes AFqg(n) and AE| (n) in the expected values Eyln)
and #5;(n) caused by using ale, 8) and bie, 8) instead of Afe, B) and
B{w, 8), respectively, are given by

(1 — a)llog ble, 8} ~ log Ble, 8)] —f—}

log ale, 8) — log A (e, &
(3:99) AEo(n) - oz[ O__EL_.LO{' p’) . O (rx__l.

Ey(z)
e, 8) a{e, 8)
1 - ) log—-" + alog — 2. "
T es T ey O
B ]L-'D(Z) '\\\
and N

Bllog biex, ) — log Bla, B)] 4 N\ }

1 — B)llog ala, 8) — log A, 4
(B:100) ARy (n) ~ ( 6)__[ona(a,__ﬁ__) og AXe, 5)]

Bz O
bla, B) AN ala, B)
I (1 =) S
flog oz o ¢ ;;\ﬁ} B o B

. E 2)
Forrulas (3:99) and (3:108):4;158; of course, approximation formulas,
since (3:97) and (3:98) am.%‘zﬁproxim&tions However, if the error in

e

the formulas (3:97) and {398), L.e., if the differences -
N
£ 3
X g 1 —a)logB log A
(3:101a) oy - LT log B+ alog
) :“s Eo(ﬂ)
and )
log B+ (1 — 8)log A
G101) D Eyn) — D8 +,(, A lo
N Ey(z)

wereexactly independent of the quantities 4 and B, then in (3:99) and
.»\(3?“31 00) the equality sign would hold exactly. It can be shown that
N#mall changes in A and B affect the differences (3:101) exceedingly
little, and, thercfore, (3:99) and (3:100) are very close approximations.
We shall derive upper bounds for the right-hand members of (3:99)

. ble, . ala, 3)
and (3:100). Binee Fo(z) and log (e '82- are negative,” while log ———

Bla, 8) Ale, B)

o

is positive, we have

% Tt is remarked at ihe end of Section A.2.1 that & {#) and a ecertain quantity A
defined there have opposite signs. Sinee by = 1 Hy is true, and kg = —1if 7, is
true, it follows that Ey(z) < 0 and B,(z) > 0,
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Be, ) ,
1 - logo®? | 1 820 g 2P
P Bla, 8) f'- (a, B) Bla, 8)
{3:102) - <
bu(z) Eg(z)
1 log blw, B)
Eot)  Bla, 8)
Qimilarly, since £, {2) and log a,((a, ?) are positive, while log _E i)
o, \
is negative, we have &
t ’ 'y y AN e
8 log B(("’“ ’2 + (1 -8 log A(( ’5)5 (1—-8) logj(a.f)n}
L? 10%) 2, o, 8 < '.‘(‘{?,\ﬁ
I,) PN
1 4 "\E:I"(a} ﬁ)
Edal A2, 8)
1 ale, By
Thus, for all practical purposes —— log - 2438 an upper bound for

B AP

b O
(2 P) isanup pe,r‘bc’nfmd for AEg(n). The cxact
B FBwp
\alues Ala, 8) and B(a, §) not bemg ‘Lno“n we cannot yet use these

AR (n) LIld

1 afe, 8)
limits. Since & >0, 1 it f s obtained
imits.  Since Ky(2) :a\n{ﬂpel imit o (z) gA(a} ﬁ)l L
Iy substituting for E(——) an upper bound of — ( ) . Similaxly,
,”m‘ifﬂi; ﬁ) A (aa
AN/ 1 b{e, B)
gince Fofz) < U\zm upper limit of —— log — can be obtained by
\i PQ{Z) B(a
O bla, B)
Suh:tltufl\:, for —(C—\—) u lower bound of ———
Ba, ) Bla, 8)

"”}Dm equations (A:29) and (A:30) in the Appendix one can derive
the Tollowing inequalities:

ale, £)
3:101 ——— = b
3100 A d
and
be, 8)
. - =
(3:105) B Z™

where the quantities & and np are defined by equations (A:27) and
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(A:28).% The quantities & and z have been explicitly computed for
binomial and normal distributions.

Thus, we arrive at the following result: For all practical purposes
we may regard (log 8,)/#1(z) us un upper bound for AE,(n) and
{(log ng,)/Eun(2) as an upper hound lor AR, (n).

TABLIL 4

IncrEas® IN ExrEcreEp Nudpre or OpsuRvaTions RESULTING FROM
APPROXIMATIONS 1N CRITERIA FOI TREMINATING 4 SEQUENTED,

I'rocess X
'\
Number of Y \/
Observitions Needed | o = 01 a = _01”("1’3 = .05
for the Current Ho= 01 it = _£}Z"{: 3 =05
Most Poworful Test ‘\
AN
10 110 13 1.6
30 1»9.:\ 2.2 2.7
100 S 1.0 4.9
200 o) 4.0 5.7 6.9
500 SN 7.7 5.0 10.9
1000 ON[ 10.8 12.7 15.4

The tabular entries my, or practical purposes, be ireatnd as upper bounds of
the exact increases. ¢ Phetable relates Lo u test of the mean of normally distributed
variate, the differguﬁa etween the nolt und alternative hypotheses heing adjusted
for euch pair Of“ifg}ucs of @ and 3 so that the number of trials required under the
hest, currentyiéshis as shown in the left-hund eolimn,

3

. N
1 Thisgdam be scen as follows: Substituting A (w, 8) for 4, B{e, 8) for B, and o
for 0,\\5(Bvobtain from (A:29} and (A:30)

ad

[B(G:, B)]hmu)’?b‘g = Eﬁug

Bop** 2 [Ala, §)*P0g,

Sinee we lel 4 = Afw, 8) and B = B{w, §), we have L(fy) = 1 — o and L{) = 8.
T foliows [rom this and the two equations which are ohtained from (A:18) by
subatituting & and #, for 4 that

B -
Bt =1 =bla, 8) and Eu** = 1=8 e
— "
Since A = 1, we obtain

Ele, Blgy = bloy 8) and  ale, B) £ Ala, 8)5,
from which (3:104) and (3:105) follow.
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As an example, consider the case in which the distribution under
Hyp 1s normal with zero mean and unit variance, and the distribution
under Hy is normal with mean # and variance unity. Since for the
normal distribution wy = 1/8; [sce cquation (A:51)] and —Eylz) =
E;(z), the upper bound of AE,(n) is the same as the upper bound of
Ay (m). 'This upper bound depends only on the value of 8. Tor any
pair {e, 3} and for any positive integer m there exists exactly one value
of @ such that m ohservations are needed for the eurrent most powerful
test of strength (o, 3. Thus, with each integer m and pair («, 8)

there is associated cxactly one value of 8. Table 4 shows the common

upper bound of AEy(n) and AF{n} calculated for values of # corre-

sponding to different paire (@, 3) and integers m. 4\’\“;\,
O
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Chapter 4. OUTLINE OF A THEORY OF SEQUENTIAL TESTS
OF SIMPLE AND COMPOSITE HYPOTHESES AGAINST A SET
OF ALTERNATIVES

In Chapter 3 we were concorned mainly with the t-hc{_n_'cT:.ical'ca-se of
festing a simple hypothesis Hy againgt a single alternalive iy In
problems arising applications, the unknown }‘)éi,l';'t-]'l'lel.[?l',\\’,Q' Param-
cters, can usually (ake infinitely many values. In thisNchapter we
shall diseuss sequential tests of simple and composite hy potheses
against infinitely many alternatives. )

AV
4.1 Tests of Simple Hypotheses \/

4.1.1 Introductory Remarks N

A simple hypothesis has been deﬁnegl'éss’il statemenl which specifies
completely the values of all the unkudwh barameters.  We should like
to make some remarks concerninghe conditions under which a test
of u simple hypothesis is m aniglul and appropriale.  For this pur-
pose it will be sufficient 1o cg_nis}der the case in which there is only one
unknown parameter 6 invelved in the distribution of the random vari-
able z under constderation. A simple hypothesis is then a statement
that 8 is equal to & I@ws’pcciﬁod value 8y,

In applications t§ problem of testing a hypothesis usnaily arises
as follows: ThereNare two alternative courses of action, say action 1
and action 2, Metivecn which 2 decision is Lo be made, and the prefer-
ence for one O “the other action depends on the value of the parameter
f. Let andenote the set of a1 values of @ for which action 1 is preferred
to action'2; then action 2 is preferred to action 1 for ail values 8 out-
si(le\"anf Lot £, be the hypothesis that 8 is contained in w. Then the
problem of deciding betwoen the two courses of action ean be formu-

ted as the problem of testing the hypothesis &,. If H, 1s accepted
we take action 1 and if A, ig rejected we take action 2. If the degree
of preference for one or the othor action varies continuously with the
value of 8, the sct w cannot consist, of u single value §,. In fact, if w
Were to contain only the single value B, it would mean that we prefer
action 1 when # = ¢, and we brefer action 2 for any # == f;, no matter

' For valucs # on the boundary of it will usaally be Inconsequential which
action is Laken,

70
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how near ¢ is to 6y, Thus, we would have a discontinuity in our prefer-
ence scale at @ = 6.

‘We see that the problem of testing a simple hypothesis arises, strictly
speuking, only if there is a discontinuity in our proference scale for
actions 1 and 2. While a discontinuify in the preference secale is, of
course, possible, it will cecur rather seldom. A diseontinuity in the
preference scale may oceur, for example, if we want to test the validity
of some hypothetical scientific theory which implies that the param-
cter @ must have a specified value 8. In such a case any deviation of
the value of 8 from 85, no matter how small, is of importance, since 4O\
invalidates the hypothetical theory in question. A

Whenever the degree of preference for one or the other action’yables
continuously with the value of 8, the hypothesis to be tested will have
to be, strictly speaking, a composite one. Nevertheless, fréquently it
will be expedient to approximate the composite hypothéds by o stmple
one, sinee the latter is usually a simpler problem to¥réat. As an ilbus-
tration, consider the following example: Supposesthat the hardness «
of a material varies from unit to unit and is notmally distributed with
a known variance. The mean value 8 of z jsehbwever, unknown. Sup-
pose that 8, is considered to be the mosf E]e'sirable value of 8 and the
material is considered loss desirable theygreater |6 — 65]. Let action
1 be acceptance of the material andwagtion 2, rejection of the material.
Preference for acceptance is stromgest when 6 = 65, The preference
for aceeptance will decrease steadily as | g — fy ‘ incresses. There will
be a positive value & such‘t}:gat for | 8 — &g i > & rejection of the mate-
rial is preferred and thé dégree of preference for rejection inereases
with increasing valud\o |6 — 8} in the domain | o — 6| >6 If
e — 8, | = 8, 1.e,(f the quality of the produet is just on the margin,
neither action is hreferable to the other. In such a situation the proper
hypothesis to-be'tested i the composite hypothests that [6 —8] < 8.
However,;%ﬁ is small, the composite hypothesis may be replaced for
practical\purposcs by the simple hypothesis that # = 6. The test of
thga\hyﬁdthesis that 8 = 8; will have nearly the same operating charac-
téristic function as the test of the hypothesis that | 6 — 8 | = 3, for
the following reasons. To test the hypothesis that | g — 60] = & we
subdivide the #-axis into three zoncs: zone of preference for aceeptance,
zone of prefercnce for rejection, and zone of indifference.  As explained
in Section 2.3.1, the zone of preference for acceptance consists of all
values # for which acceptance is strongly preferred, i.e., for which the
rejection of the material is considered an error of practical importance.
Similarly, the zone of preference for rejection consists of all those values
6 for which rejection is strongly preferred, whereas for values # in the
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indifferent zone the preference for one action over the other is only
glight and we do not care particularly which action is taken. Tn our
example the three zones may reasonably be defined as follows. We
sclect two positive values 8y < dand 8§, > 5. The zone of prelerence
for acceptance is given by | # — 8 | = dg, the zone of preference for
rejection hy |0 — 00] = 81, and the zone of indiffcrence by 8 <
] 8 — I < 8;. The test proecdure will then be constructed so that
the probability of rejection will not exceed a preassigned value o when-
ever # is in the zone of preference for aceoptance, and the probability
of aceeptance will not exceed a preassigned value 8 whenever, 48 in
the zone of preference [or rojection.? Now if we replace the, oMginal
compogite hypothesis by the simple hypothesis that 8 = 64 the zone
of preference for acceptance will consist of the single, Yalic 8 = 6.
The zone of preference for rejection may be delined™as hefore, by
| 8 — 85| = 5,. The zone of indifference is then givefdby 0 < | 6 — 8
< 81, The lest procedure for tesling that ¢ =8 ¥ then satisfy the
requircment that the probability of rejecting ths‘hypothesis is « when
8 = 8 and the probability of accepting the Hypothesis doss not exeeed
# whenever | 6 — by '5 = &. If & is very;sﬁl:i'll, the test of the hypoth-
esis that 8 = fy will satisfy the requifcmients imposed on the test of
the original composite hypoi.hesisn\’\*i'hh clogse approximation, since the
probability of rejecting the hypéthesis will be neardy cqual to « for
values @ in & sufficiently snm.fl)}.’eighborhood of 5. Thus, for practical
purposes we may replacefthe original composite hypothests by the
simple hypothesis that'(:‘"'% Ba.

As we have zoen, J\f&st of a simple hypothesis will oceur in applica-
tions in two cases¥l) when there is o discontinuity in the prefercnce
scale and the prdBlem calls for testing a simple hypothesis in the strict
senge (these m{bes are rarc}; (2) when the problem is such that it ecalls
for testing@yvomposite hypothesis and it is approximated by a simple
hypothe8ig*merely for the sake of simplicity,

In terms of the zones of preferenco for acceptance, of preference for
rajjag%ion, and of indifference, the simple hypothesis may be character-
taed by the condition that the zone of preference for aceeptance con-
sists of a single point.,

4.1.2 Test of a Simple Hypothesis against One-Sided Alternatives
We shall discuss here the simple case in which there is only one un-
known parameter # and the hypethesis that § = 8, is tested against
alternative values of # which lie on one side of g, say > 8,. In other
words, only values of 6 > 8, are considered admissible alternatives to

? In this connection see Scetion 2.3.2.
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the hypothesis to be tested. In this case the zone of preference for
acceptance consists of the single value 8. The degree of preference
for rejection of the hypothesis will gencrally increase with increasing
value of 8 in the domain 8 > 8. It will, thercfore, be possible to find
a value 0, > 8 such that the ucceptance of the hypothesis 1s con-
sidered an error of practical importance whenever 8 Z 6, while for
values 8 > 0p but < 8 the acceptance of the hypothesis is an error of
no particular practical conscquence. Thus, the zone of preferenee for
rejection may be defined by & 2 8, and the zone of indifference by
Bg << 8 < Gy %

Aceording to Section 2.3.2 we shall impose the following requirces
ments on the OC funetion of the test. The probability that thieNay-
pothesis will be rejected should be equal to a preassigned vah;cléx\vhen
g = #,. 'The probability of accepting the hyvpothesis shouldmat exceed
a preassigned value § whenever § 2 6. D

Tn most of the important cases oceurring in przmtiﬁp}such as when
z has a normal, binomial, or Peisson distribution ‘and so on, the se-
quential probability ratio test of strength (cg,:ﬁ)\\for testing the hy-
pothesis that # = 6, against the single alternative 0; will gntisfy the
imposed requirements, since the probabilith %f an error of the second
kind will decrease steadily with incrqas’mg," values of # in the domain
g = 8,. Thus, in all these cases ’qhehééquent-ial probability ratio test
for Lesting the hypothesis that £ =80 against a properly chosen alter-
native §; provides a salisfactory golution to our problem.

The case in which the alltezma-tive values of 8 are restricted to values
§ < 6 instead of valudg {39, is entirely analogous and need not be
discussed separately. &\

413 Test of 2 Simple Hypothesis with No Restrictions on the

Alternative Values of the Unknown Parameters

In this s(x\-t-ion we shall deal with the following general problem: The
distributien of involves & unknown paramcters 8y, <=+, g, and the
hypothesis /T, to be tested is that 6, - -+, 6 arc equal to some
sﬁ&cﬁied values 8;°, -, 6", respectively. The get of k& parameters
(B, -+ -, 0;) will be denoted by # without any subscript and will
be referred to as a parameter point. The use of a superscript to the
letter 4, such as ¢° or 8", ete., will indicate that & particular parameter
point is meant. Our hypothesis Hq can thus be expressed by stating
that the unknown paramecter point # is equal to the particular param-
eter point 6%,

As we have scen in the preceding section, the zone of preference for
acceptance eonsists of the single parameter point g°. Denote the zone



74 TESTS FOR SIMPLE AND COMPOSITE HYPOTHERSES

of preference for rejection by w,. This will usually be the set of all
points 8 whose “distance’” {defined in some sensc) from #° is greator
than or equal to some given positive value. The requirements imposed
on the OC function of the test, as formulated in Section 2.3.2, can then
be stated as follows: The probability that Hg will be rejected when
6 = ¢ should be equal to a preassigned value o and the probability
that Iy will be accepted should not exceed a preassigned value 8 for
any parameter point # in the zone w,.

Before we discuss the problem of constructing a proper sequential
test satisfying the above requirements, we shall consider the proflem
of fnding a proper test procedure satisfying the following del{led
requirements.  Ifor any @ in e, let 8(8) denote the probablhtg that H 0
will be aceepted when # is the true parameter point. Thuss(#) 15 the
probahility of an error of the second kind when ¢ is truv Our original
requirement was that 5(6) should not exceed a pres&s@gned value g for
all #in w,. Instead we shall now require that thiesweighted average of
B(#), weighted with a given welght fum,tlon u{(@), ghould be equal to
B, 1e, &

(4:1) fﬁ(ﬁ)w 9) dﬁl >

where (f) 2 0 for all ¢ In w, and} 3

(1:2) \f ;w(ﬂ) =1

The requirement t-hat\qixé' probability of rejecting Hy when Hy is true
be equal to a preasgigned « is maintained as before. A proper sequen-
tial test proccdur{i matisfying these modified requircments can ensily
be constructedh M et pg, be the probability distribution of the sample
(21, -+, T&Q:\\’}ien ITy is true, i,

&N\
(43) ,‘?D” = j'(:vlr '910; tt efco)f(ﬂ:?; 910: T 9360) T Jr(xm 910, T Skﬂ)
F‘\mjﬁh\crmure, let py, be defined by
3

@d)  p = f F1y 01y 0y 88 - (B 61, -+, Bp)0(8) 08

Thus, p1, is a weighted average of the probability distribution fune-
tions flay, 1, - -, 04) =+ f(n, 61, -~ -, &) corresponding to various
parameter points § in w.. As such, pp, itself is a probability distribu-

* The weighl funclion w(8) may also be discrete. A single formula valid for both,

coniinuous and diserele, weight functions could be given by using Stieltje’s integrals
in (4:1) and (4:2).
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tion function of the sample (zy, -+ -, z.).* Let Hy denote the hypoth-
osis that the distribution of the sample (z1, - --, ) Is given by pra
defined in (4:4). Then H, is a simple hypothesis, since it spéciﬁzes
completely the distribution. Consider the sequential probability ratio
test of strength (o, §) for testing Hy against the simple alternative
hypothesis ;. This procedure is given as follows. Reject Hy if

(4:5) Pir s n

Pon
accept Hy if
(4:6) Pr<p AN

Pon ) \‘ N
and take an additional observation if A\ N

) { {.'
(A7) B<™M <4 o)
Don

The expressions pg, and p1, are given by (4:3 and (4:4), respectively,
and the constants 4 and B are to he chos.(:n’;%o that the test will have
the required strength (a, §). Aswe have seén in Scction 3.3, for most
practical purposes we may use t-lvle"approximat-ion formulas 4 =
(1 — B)/a and B = B/{1 — ) ON°

The sequential probability “ra:tih' test defined by (4:5), (4:6}, and
(4:7) ean be shown to satisfyrthe relation (4:1). Thus, this probability
ratio test may he regarded a8’ a satisfactory golution to our problem if
our requircment is thﬁmt\t e probability of an error of the first kind
should be « and thaf\g(d) should satisfy (1),

Tn practical plfob‘ldms, howeaver, it scems more reasonable to main-
tain the originalyequirements. That is to say, we shall want a test
procedure \lich that the probability 8(8) of accepting H, does not
exceed giar all parameter points 9 in the zone w,, and the probability
is « thad we shall reject Hp when & = g°. There are, in general, infi-

ifclymany sequential tests which satisfy these requirements, and we
wallt to select one for which the expected number of observations is
as small as possible.

4 The distribuiion of the sample (@, -+, %=) will be precisely given by pin if
we assume that @ in «, has a probability digtribution given by the density funetion

w{A).
5 Although the successive ohservations i, &z, - -, ete, are not independent
when H is trie (p1. cannot be represented as & produet. of » factors whore the ath

factor depends only on ), the reslts and conclusion in Sections 3.2 and 3.3

remain valid, as pointed out in Section 3.2
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Although & thorough investigation of this problem has not vet been
made, the following approach may perhaps be reasonable. 1ist we
restrict ourselves to the class C of sequential probahility ratio tests
based an the ratio p1,/pon, where Pon s given by (4:3) and py, by
(4:4), corresponding to an arbitrary non-negative weight lunetion w()
satistying (4:2).* Thus, the class € containg at least as many tesls as
therc are possible weight funclions w(8) satisfying (I 2). A test in
class C is uniquely determined by choosing a particulur weight fune-
tion w(f) and particular values for A and B. The test procodure is
then carried oub in the usual way. #, is accepted if g,/ Do ENA,
Hy is rejected if pra/pon = A, and an additional obscrvaiionAg thade
HB < pia/pen < A. The restriction to the class O of r‘-;cq;ucjﬁ?e?l tests
is suggested by the fact that we have been led to these fests by the
requirement that some weighted average of the prol }u})ﬁi’cies ol crrors
of the seeond kind be equal to a given value 3. R4

Accepting the restriction that the sequentialbest)should be o mem-
ber of the ecluss C, we still necd a principle £ choosing the weight
funetion w(#). Suppose that the quantitie€ 2l and R have already
been determined. Lot us then examingwhat would be a reasonable
choice of w(#). After A and B have béeﬁ chosen, the prohubility a of
making an crror of the first kind vis;tﬁl?s(} determined for practical pur-
poses and the choice of w(g) wilh 1ot aflect it.7 Thus, the choice of
w(®) will alfect only 2(8). Aweight funetion w(#) may be regarded
the more favorable the smafler the maximum value of S8} with respect
to § (8 is, of course, yesfrieted to points in wy). Thus, the following
choice of w(f) seems Jreasonable: For given values of A and B the weight
function w(@) is chaseh for which the maximum of 3(6) with respect io 0
(8 restricied to poWits in w,) takes its smallest value, When this principle
for the eho}g{z;fof w(?) is adopted, & and the maximum of 3 with
respect t-cNu(S In ;) will depend only on $he quantitics A and B.

¢ Instded of defining m, by some weighted average of the type given in (4:4), it
unlcl::%cém equally reasonable to define py, as the maximum of Flzy, &) Flzy, 0
“\Qh‘xrespeet to f where 8 is restricled to points in w,. Then the rutio P1ad P would
coitieide with the so-ealled likelihood ratio introduced by J. Nevman and 1. Pearson
and widely used in cwrent test procedures. OQur reason for preferring weighted
averages is thet the theory of such lests scerns to be considerably simpler. If
Dir were defined by the maximum with respect to 8 in wy, iy would no longer be a
probability distribuiion.

" In faet, with good approximation the following relations hold: (1 — @l/fa = 4

and F/(1 —a) = B where B = f A(f)w(E) df.  Solving these cquations with

respect to o and  wo abtain & = (1 — By /(4 — Ryand B = [B(d — D]/(4 — B}
Thus, & and 5 depend only on 4 and B,
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These values 4 and B are then determined so that the probability of
an error of the first kind has the desired value & and the maximum
of 3(6) with respect to 6 is equal to the required value 3.

Therce is no general method yet available for the determination of
an optimum weight function w{f) in the sense defined above. For
some special but important cases, however, such a weight function has
been determined. This point is discussed in Section A.S.

4.1.4 Application of the General Procedure to Testing the Mean
of a Normal Distribution with Known Variance
Tn this section we shall consider the problem of festing the simple
hypothesis Hy that the mean 6 of & normal distribution with ledon
varianee is equal to a particular value fo. The acceptance of (o will
not be considered a scrious ervor if § # f; but is near Bg.(»IIo“-'ever,
there will be, in gencral, a positive value & such that the heteptance
of Iy is consideved an crror of practical import-anccwﬁ\tnnd only if}
8 — 8

[ %4
distribution. Thus, the region of preferenuc']’br rejection may be de-
&> 8

Q!

= §, where ¢ denotes the known stan{l@yd deviation of the

= & The region of

fined as the set of all values & for whichy

preference for acceptance will cqusisii} of the single value 8, and the
region of indifference will be the ket of all values § for which 0 <
§ —fy |

P4\

< 8. §

T ¢, &\
The probability de \Si}y of the sample (@1, ~- -, %a) under Iy is
given by

:‘i\ 1 __1_ ﬁ (= _90)2
.o\,, P L o
(4:8) ~Y po = e
N (20"

Accarding to the gencral theory diseussed in the preceding seetion,

:\i;%"defmed as some weighted average of the probability density cor-
responding to various values of 8 I the zone of prefercnee for rejec-
tion. Tt is shown in Section A.8.2 that an optimum weighted average
o density functions: the density fune-
d the density function correspond-

i the simple average of the 1w
tion corresponding to 6 = o — do an
ing to @ = 8y 4 8. Thus,

[ 1 - -21—.. E(za—t?o-l-ﬁa)z_’_ 1 6—- .—2%‘. :(za—eu—aa)z]
e =

(202" 2n)o”

1
(£:9) P1a = 2
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The test is then carricd out as follows. We continue taking obser-
vations as long as B < pin/mon < A, I pro/pon = A, we roject Hy,
If pn/Pon £ B, we accept 7Ty, To make the probability of an error
of the first kind equal to « and the maximum of 808} (ix the domain
-

[
A=00~-g/eand B = 8/(1 — a).

A more detailed discussion of this test procedure is given in Part 11,
Chapter 9,

= 5) equal to g, for all practical purposes we may put

Q"

4.2 Tests of Composite Hypotheses O\

4.2.1 Discussion of an Important Special Case O

A frequent and important problem is that of testing{the Lypothesis
H that the unknown parameter 8 does not exceed s sideificd value 8%
This problem is of particular importance in uality control of manu-
factured products. The importance of an oredrof the first kind {re-
jection of IT when H is true), or that of arf &rror of the second kind
{acceptance of 7T when H is false), will ot ly vary with the valuc of
8. For example, if ¢ is only slightly 'biejloiv &' the rejection of H will
not be considered a serious ervor, Sihﬁlarl}-', if 8 1s oniy slightly ahove
6" the acceptance of & will not beleonsidered a serious error. In gen-
eral, the importance of an errefof the first kind will inerease steadily
with decreasing value of 4 ifithe domain 6 < ¢, and the importance
of an error of the secoygi‘){md wiil inerease steadily with increasing
value of 8 in the domdimé > ¢'. Thus, it will be possible to find two
values fy << # and @\> 8 such that an error of the first kind is con-
sidered of pract;igsﬂ simportance whenever 6 = fly, and an errvor of the
second kind s wensidered of practical importance whenever 2 = 6,
whereas forfvahies ¢ between fo and #; we do not care particularly
which (‘153{3&13}1 1s made. Henco the zone of preference for acceptance
may hdefined as consistin g ol all values # = 6, the zone of preference
fop\{‘tﬁ‘ect-ion as the set of values # for which # = 81, and the zone of
indifference as the set of all values ¢ for which 8, < # < 8,. In such
& sifuation we shall want a test procedure for which the probability
of an error of the first kind is less than or equal to a preassigned a
whenever ¢ < 8, and the probability of an orror of the second kind is
less than or equal to a preassigned 8 whenever @ 2 6. In most of the
important cases oceurring in practice, such as when = has a normal,
binomial, or Poisson distribution, and so on, the sequential probability

* It iz assumed here that there is only one unknown parameler ¢ involved in the
distribution of z.
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ratio test of strength (@, 8) for testing the hypothesis that 8 = 8,
against the single alternative that § = 8; will have the desired prop-
erties and provides a satisfuctory solution to the problem. If the
gequential probability ratio test loads to the acceptance of the hypoth-
esis that 8 = 6, we accept the original hypothesis that # < ¢, and if
the probability ratio test leads to the rejection of the hypothesis that
g = 0, we reject the original hypothesis that § < 6'.

Ag an illustration, we shall discuss briefly one or two examples.
Suppose that a lot consisting of a large number of units of a manu-
factured produet is submitted for acecptance inspection. We shad\
assume that each unit is classified in one of the two categorieps de-
fective and non-defective. The proportion p of defectives i;l\t-he\lot
is assumed to be unknown. The preference for acceptange‘er rejec-
tion of the lot will, of course, depend on the valuc of g™t will be
possible, in genersal, to select two values of p, say po and’p1 (po < P1)
such that the rejection of the lot is considered anlértor of practical
importance whenever p £ po, and the acceptance Si*the lot is an exror
of practical importance whenever p Z pi1; for :{-:;‘ﬁes p between pg and
p1 we do not carc particularly which decision,\is made. Thus, the zone
of preferencs for acceptance is given by £ po, the zone of preference
for rejection by p = pi1, and the zoncvef indifference consists of values
p for which py < p < p1. Heneg,! we shall want a test procedure for
which the probability of rejecting ‘the lot is less than or equal to a
preassigned value @ wheney€np = po, and the probability of accept-
ing the lot is less than pr,\equal to a preassigned value 8 whenever
p = pi. Such a test procedure is given by the sequential probability
vatio test of strength (w, 8) for testing the hypothesis that p = @0
against the singlel'al“t-crnative that p = p;. To compute the proba-
bility ratio puyype. for this problem, we shall denote by d, the number
of defect-i@‘i‘cjund in the first n units inspected. The probability of
obtaining"a sample cqual to the observed one is given by

(4:1:0);; ) pia = P — )T

{S':ﬁér[ p = py, and by

(@:11) - pon = P — po)" "

when p = po.! Then

(4:12) log Piv _ dalog Py (n— do) log i—:—pl
Pon Po Po

¥ Formulus {4:10) and (4:11} are strictly valid only if the ot cont¢1in§ infinitely
many unibe. It is assumed that the lot contains a large number of units so that
these formulas can be used with good approximation.
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The test procedure is carried out as [ollows. We continue inspec-
tion as long as log B <log (p1a/pon) <log A, If log (p1./pos) 2
log A, inspection is terminated with the rcjection of the lot, and if
log (p1n/Pos) £ log B, inspection is terminated with the accoptance of
the lot.  For practical purposes we may pul A = (I — 8)/a and B =
B/ (L — a).

A detailed discussion of the problem of aceeptance inspection when
each unit is clussified either as defective or as non-defective is given
in Part I in Chapter 5.

Another example for testing a hypothesis that 8 = ¢ 1s thefease
when # is the unknown mean of a normal distribution with, Khown
varlance.® Again it will be possible to select two values 84 <8 and
d, > & such that an crror of the first kind is considcm{lb‘r practical
importance whenever 8 = 6y, an error of the second ¥t is of prac-
tical imporlance whenever 8 = 6;; for values 8 begvéen 6, and 8, we
do not care particularly which decision is madedCIn such o situation
we shall want a test procedure for which the pl\'o.b:;mbility of committing
an error of the first kind is less than or equal @ some preassigned value
a whenever 8 = 8, and the probability o’f}ommitting an error of the
gecond kind does not exceed a pl'easisi‘igtnéd value 8 whenever 8 = 6.
These conditions will be satisficd J¥sthe scquential probability ratio
test of strength (a, 8) for testingithe hypothesis that ¢ = 8, against
the single alternative hypothesf%hat 8 = §;. The probability density
of the sample (zy, - -, z,)48\given by

¢\J 1.
{4:13) b@\n —_ 1 Pt S(rg—ag)?
SO @
when 8 = 8, andby
O 1 — i e — 112
(4:14) \"\ Pln = ¢ {iw—81)
&N\ (211_)%3:,

“:lmr’g\.fl = 8. We continue taking observations as long as B <
Pra/pon < A IE pra/pon = A4, we rejoct the hypothesis that § < &,
and il prn/pon = B we accept the hypothesis that § £ ¢. Again, we
put A = (1 — @)/ and B = §/(1 — o).

4.2.2 OQutline of the Test Procedure in the General Case

In testing a composite hypothesis H,, that the parameter point ¢ lies
in a subset « of the parameter space, the parameter space 15 agam
subdivided into three mutually exclusive zones: the zone of preference

1® This problem is discussed in detail in Part IT, Chapter 7.
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for acceptance w,, the zone of preference for rejection w,, and the zone
of indifference. The zone of preference for acceptance will now con-
sizt of more than one parameter point, as distinguished from the case
of testing a simple hypothesis.

For any test procedure the probability of an ervor of the first kind
(rejecting H,, when TI,, i3 true) will, in general, vary with the param-
eter point in . For any parameter point § In o we shall denote by
a(6) the probability that H, will be rejected when @ is true. Simi-
larly, the probability of an error of the sccond kind (aceepting H,, when
it is false) is a funetion B(#) delned for all points & outside . ,

Aceording to the requirements formulated in Section 2.3.2, we gshall
want a test procedure such that a(#) will not exceed a preassigned
value a for all # in the zonc a,, and 8(8) will not exceed a prcassigt{éd
value @ for all 8 in the zone w, Before discussing the problom of
finding a proper test procedure satis{ying these requimmep}s, e shall
again consider, as in the case of the simple hypot-hcgis;\t‘hc following
modified problem: Lot w,(8) and w,(6) be two notizpepative functions
of 8, called weight functions, such that 't AN

RS
(1:15) f wa(8) df = 1 and :w{(&) de =1

Suppose that we wish to congtruct & sequential test such fhat the
weighted average f a(Pw,() dﬂ,b:f’:t’he probabilities of ervors of the

wa

first kind is cqual to a given value o, and the weighted averapge
ne . .

fﬁ(ﬁ)w,(@) dg of the probabilities of errors of the second kind is a
given value S 79N i ‘

A proper sequentidl test satisfying these modified requirements can
be const-ruct(;c(;h"fnllows‘ Let 9o and pr. be defined by

\’x.ﬁ

(4:16) o = [ FGos, b1, s 80) <o Flom B, o, Bald) 8
andn\O )

\ 3
(4:17)  puw =ff($1, Gy, wory ) o T @y 01y fr)w,(6) df

where f(x, 6y, -+, 0k) denotes the probability distribution of x \\rlh.en
8is true. The functions pon and Pra can be interpreted as probability
distributions of the sample (xy, « -, @a). Denote by Ho* the hypoth-

1L Phe weight functions {8 and w,(f) may also be diserete. Formulas valid
for both contndnunus and discrete weight functions could be given by using Stieltje's
integrals in (4:15) and subsequent equautions.
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esis that the distribution of the sample {xr, - -+, 2,) is given by (4:16),
and Ly H* the hypothesis that the distribution of {1, *- -, @) is given
by (£:17). The sequential probability ratio test of strength (e, 8) for
testing Ho* against 77,* provides a solution to our problem. If the
constants A and B in this sequential test ave chosen so that the prob-
ability is « that we rcject Hy* when J7 0¥ 18 true, and the probahility
1s 8 that we accept Hy* when I1,* is true, then for this sequential test
we have

f?f!a(ﬂ)a(ﬁ) i = w

and .
oA\
f w (F)3(6) 0 = 3 'S X\
To make the strength of the tost of 77 o against L _r*\ e&i.l;ll to (a 8),
again, for practical purposes, we may put A =.{L*% 8}/« and B =
B/(1 — a). ’

To construet a sequontial test procedure Sa@'sfyi ng the requirements

(4:18) ald) = o for sl w,
and ’:,: 4
(4:19) BE) < g.xor all 6 i w,

wa shall restrict ourselves to sequential probabilily ratio tests for which
Por and py, are given ’t;;{’(%:lﬁ) and (4:17), respectively, and w,(f)
and 20,(4) may be any akgizht {unections satiafying (4:15), Denote by
C the class of all suchMests corresponding to all possible weight funec-
tions w,(#) and w8 To select a proper test from the class C which
satisfies the reqiiPements (1:18) and (4:19), our procedure will be sim-
ilar to that ithe ease of simple hypotheses, as discussed in Section
4.1.3. A\Q?c in class C is uniquely detormined by the choice of the
const-a’ni’?sﬁ and B and by the weight funetions we{8) and w,{f). Thus,
the maximum of «(8) with respect to 8 in the Zone w,, as well as the
@ghfmm of (%) with respeet to 8 in the zone oy, is determined uniquely
by A, B, w(f), and w,(6). Denote these maxima by ald, B, w,, w4
and 3[4, B, w,, w,], respectively,  Tor given wvalues A and B, the
weight functions w,(8) and w,(9) may be regarded the more desirable
the smaller they make a[4, B, w,, w,] and 8[A, B, w,, w,). Thus, if it
is possible to find weight functions w.(8) and w,.(6) for which both
ofA, B, w,, w,] and g4, B, w,, w,] are simultaneously minimized, they
may be regarded as optimum weight functions. It is shown in Section
A.9 that in some important special cases, such as testing the mean of
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o normal distribution with unknown variance, optiraum weight fune-
tions of the type described above do exist. Ilowever, it is not known
whether they generally exist. If it is not possible to minimize both
oA, B, wy, w,] and B[4, B, w,, w,] simultaneously, it may he reason-
able to choosze w,.(#) and w.(f) such that some average of the two
values ofA, B, w,, w,] and B[4, B, we, w,], or the maximum of these
two values, is minimized,

If the principle deseribed above for choosing the weight functions
1w, (8) and w,(0) is adopted, the maximum of a(@ in the zone w, and
the maximum of 8(8) in the zone w, will depend only on A and B,
Finally the constants A and B are determined so that these two maxs
ima are equal {o @ and 8, respectively. .\:\

"I'here is no general method yet available for constructing( Wweight
functions w.(8) and w,(8) which are optimum in the sepst defined
above, In some special cases, however, such weight funf:tiohs have
been constructed.” N

4.2.3 Application of the General Procedure tQ JTésting the Mean
of a Normal Distribution with Unknown Variance (Sequen-
tial £-Test) \

A frequent and important problem in,.a?pplications ig that of testing
the hypothesis H that the unkanown .yﬁﬁmn g of & normal distribution
is equal to some specified value O Shen nothing is known about the
variance o2 of the distribution. Fhthe true valuc & difers only slightly
frorm @y, i.e., if | f§ — g l, 18 n*]“y a small fraction of the standard devi-
ation ¢, the acceptance of B will usnally not be considered an error of
practical consoquence, wever, the importance of an crror committed
by accepting H wheh & 7 fp will, in general, increase with increasing

g — N L . _ e
value of | — % Thus, it will be possible to find a positive ¥ alue
A& J .

8 such tha\'th’e acceptance of H is considered an error of practical

=% > 5. Accordingly, the three zones in

impor.t{airfée only when
o e will be defined as follows. The zone w, of preffcr-
ts of all points (6, o) for which § = By, le.,
#) where o can take any positive value.
ts of all points (8, o) for

N
the parameter spac
ence for acceptance consis
wq consists of all points (fo,
The gone w, of preference for rejection consis
f b > ¢ TFinally the zone of indifference contains all
o

which

— B

< 8.

points (8, «) for which 0 <

12 Saa Section A9
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The probability density of a sample (. «- -, ) drawn from g nope
mal distribution with meun 8 and standard deviation ¢ is given by

"

1 1 o
1 ~ g 2 (R

(4:20) Pu= e e
(272"

As in the general procedure described in the preceding seetion, the tosg
procedure will be hased on the ratio Pnd thn where g, is some weaighted
average vilue of p, corrcsponding to various points (8, &) in fuig, and
P1n s somo weighted average ol Po corresponeling to varionghpoints
(8,0) n w, It is shown in Section A9 thal hy choosing{the weight
functions w,(8) and . (#) according to the prineiples dg}:\;rifjed in the
preceding section we are lod to the following ratio: 1;;“.3

X
1 - W :\A
1 » 1 5 }_] (e — Sg—du)? N 3,,-'2\>_] (ra—dg-is)?
5 —=[e a1 +e\ Va1 | de
i 0 g \
(a:21y Din_ z Te g
Pun 1 - -_’_-:'lﬁ*'“_“”)! ;
— & '3(' do
0 TAN

The test proeedure is then carriech Qut as follows. Additional observa
tions are taken as long as B A Prn/Pon < 4. The bypothesis I is
rejected if pra/po. = 4 andoghe hypothesis i is accepted if p1a/Pon
= B. To satisly the reg\uiréfn(:nts (4:18) and (F:19} for practical pur-
poses we may let A 1" 8)/o and B = 3/(1 — ).

$

424 A Particpﬁ} Class of Problems Treated by Girshick

A class of preblems treated by M. A. Girshick may be formulated
as follows. ng?; %1 and xg be two independent randem variables. The
distribut‘iir{li,\(clem.(znta.ry probability law) of zy is given by fle, f1)
and thatef z, by f(z,, f2), where the function f is known but the valtes
of the\paramcters 8; and #, are unknown. The problem is to test the
heipothesis I that 6, < 4, against the alternative hypothesis /I’ that

B> 6,

The type of problem described above oceurs frequently in appliea-
tions.  For example, let = denote some quality characteristie, such as
hardness, tensile strength, ov weight, of a manufactured product. Sup-

# Consideruble work on the evaluaiion of this ratio to Lring it to a suitable
form for tabulation wus done by K. Amold while he was a memher of the SLatEstic?ﬂ
Research Group of Columbia University. Tables for the computation of this ratio
have becn prepared by the Mathematieal Tables Project, New York.

*M. A. Girshick, “Contributions to Lhe Theory of Sequential Analysis,” The
Annnls of Mathematical Antistics, Vol. 17 (1946).
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pose that the distribution of 2 in the population of units produced has
a known functional form f{z, 6), but the value of the parameter 8 is
unknown. Suppose, furthermore, that there are two competing proe-
esses of production under consideration by the manufacturer. Let 8,
denote the value of & when process | s used, and 8; when process 2
18 uscd, Both values, #; and s, are unknown. If the product is con-
sidered the more desirable the greater the value of 2, the problem of
deciding hetween the two competing processes reduces to that of test-
ing the hypothests H that #; = 8. Process 1 is chosen if I is rejected,
and process 2 iz chosen if H is accepted. '
The following procedure for testing the hypothesis H has been pro-
posed by Girshick, We choose a particular value 8,° of a.nd.a\';i‘tr\-
tieular value 7 of 85 where 6,0 < 8,%. Let Ty denote the hypdthesis
that the joint distribution of z; and @y is given by f(x,, 8,272, 827,
and let H; be the alternative hypothesis that the joint dist¥ibution of
&1 and zy is given by Fzn, 82} (2, %), We then sebQip the sequen-
tinl probahbility ratio test for testing the simple h);gqthesis Hy against
the simple alternative A;.  The hypothesis & i$actepted or rejected
accordingly as the sequential probability ratio't}st leads to the aceepi-
ance or rejoction of Iy, Thus, to carry oubthe test procedure, two
constants A and B are chosen and the ratio
Pim [y, 82"} (a1, 91{?}’; o f@im, 00 (om, 01°)
Pom  fau, Qlu}f(@{fﬁau) o f(E 1 000 (X2 920)_

(4:22)

is computed at each sta e'\idf’the exporiment.  Iere xy, denotes the
ath observation on w; =1, 2). It is assumed thal the observations
arve taken In pairs,Whefe each pair consists of an observation on
and an observatioh bn z.. Bxperimentation is continued as long as
the ratio pim yﬁ;,;}lies bebween B and A, The hypothesis £ is accepted
if i/ Pom BB, and the hypothesis If 15 rejected if prw/Pom = 4.

It has‘iz;éen shown by Girshick that in many iroportant cases the
aboye {est procedure will have the following property: There exists o
fun?:{i&li v = v(fh, 6) such that » may be regarded as a reasonable
measure of the difference between 8y and 2, and the probability of
aceepting H depends only on the value of v, The function » satisfies,
furthermore, the conditions: {1} {8y, 62) = @ when &, = 8s; (2) v(8, )
< 0 when fy > 813 (3) v(By, 8) = —v(ls, 61).

If o function # with the above properties exists, the choice of the
four quantities 8,° 8%, 4, and B may be made on the hasis of the fol-
lowing considerations: Let & be a positive value such that the accept-
ance of H is regarded ag an error of practieal importance whencver
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v = 8§, the rejection of 17 Is regarded as an errov of practical importance
whenever o £ —3; for values ¢ hetween —§ and § we do not care par-
ticularly which deeision is made. Thus, we shall want a tost, procedure
for which the probability of rejeeting ¥ will not exceed 2 pregssigned
value & whenever # £ —§ und the probability of secepling /1 will not
exceed a preassigned value 8 whenever » 2 6. The lest procedure will
have the desived propertics if the quantities 8,°, ° A, and B are
chosen so that v(8,°, ") = —5 and the sequential probability ratio
Lest for testing Hy against 717 has the strength {er, 3). T'or all prac-
tical purposes we may let A = (I — 8} /o and B = 81 — ) N

As an illustration, we shall consider the following example, . Shppose
that one of two production processes is to be chosorr. Suppéde further,
that the quality charnecteristic under consideration is nermally digtrib-
uted with known mean and unknown standard tle\'ia{l.i(‘)‘:{'«m when proe-
ess 1 is used, and that the distribution is normal #ith the same mean
but unknown standard devistion o when proced§ 215 used.  The proe-
ess that leads to a smaller standard deviation Ispreforved. Thus, the
manufacturer is interested in testing the, ispotlicsis I that ¢y < as.
There is no loss of generality in :.Lsmllrlir@* that the known means are
cqual to 0. Let [y be the hypothesisthit o = 0,0 and o = 0", and
Iy the hypothesis that o1 = 6% and 7, = 0% (0" < 62”). Then the
probability ratio for testing /o against 7/, is given by

~ 4

g m

EOE =me§éTali'e'Jx - Tku%n}_) [qgl(xmz— 22051
pﬂr\< w4
where 2;, denotes the ath ohservation from the population correspond-
ing to process 4.4

As Girshig:«}{has shown, the probability that the sequential prob-
ability ratioytest of H, against H, will terminate with the acceptance
of Hy 'd(;skmﬁds only on the value of

(4:23})

S

*

A 1/1 1
{4‘,24) v(oy, 02) = 2<——2 - ——2-)

oz o1

This quantity may be regarded as u reasonable measure of the devi-
ation of ¢; from oz, Suppose we want a test procedure salisfying the
following conditions: The probability of rejecting H should not exceed

1/ 1 1 )
a whenever 3 (——2 - —§> £ —4, and the probability of accepting H

T2 g1

1/1 1
should not exccod 8 whenever 3<_§ — —2) 2 8, Then we choose
Jo F
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o:® and &2° 50 that

429 o o) -

The probability ratio given in (4:23) becomes then equal to

"
Pim 8 2 (xlaz_zﬁug)
— = ga= L

(4:26)
Dom
‘When —log Pim _ Tr1a? — 22a°) is used instead 0f — , the tc&t
Pom p[]m
procedure ean be carried out as follows., We continue talung,,g{l‘r of
observations as long as W\
7%
m 3
log B log A ;’X,\
(4:27) - < Z (F1a® — #26”) < \"\<'

We accept H if

= lo, ’a‘\'
(4:28) Z(ﬂfmz — 2a?) £ *"gb

a=1 (::}”}6
and reject H if \.‘3« )
i . a}:’z; log A
(4:29) PR L
a=1 "
O



PART H. APPLICATION OF THE GENERAL THEORY TO
SPECIAL CASES'!

Chapter 5. TESTING THE MEAN OF A BINOMIAL DISTRI-

BUTION (ACCEPTANCE INSPECTION OF A LOT WHERE

EACH UNIT IS CLASSIFIED INTO ONE OF TWO CATEGORI 8)
O\

b.1 Formulation of the Problem 'S\

N

Let z be a random variable which ean take only thé ¥alues 0 and 1.
Denote by p the (unknown) probability that x takesthe value | We
shall deal here with the problem of testing the Mypothesis thut » does
not exeeed some specified value . \

This problem arises, for example, in agé@ftance inspection of a lot
consisting of a large number of units of a’fn\unﬂ:.u:tured product. Sup-
pose that each unit is elassified in onel f:)i"the two categories: defective
and non-defective. We shall assigithe value 0 to any non-defective
unit and the value 1 to any defedtive unit. Let p denote the unknown
proportion of defectives in theddt. Then the result = of the inspeetion
of a unit drawn at randoiNrom the lot can take only the values |
and 0 with pl‘obabilitiga"p,\an(l 1 — p, respectively, Usually it will be
possible to specify some value p’ such that we woudd like to accept the
lot whenever p (@4 and we would like to reject the lot whenever
p >, Tlltm,.ﬂlc“problcm of deciding whether the lot is to be ac-
cepted or r(:jg&teﬂ on the basis of a random sample may be formulated
as the pralflond of testing the hypothesis p < p’ against the alternative
hypothe§is ‘that p > p.

Si:gl\é(}‘&(:cept-ance inspection of manufactured products is perhaps
one\ol the most important applications of testing the mean of a bi-
teial distribution, in whal follows we shall use the terminology cus-

! The special eascs treated here are discuszed mainly to illastrate the general
theury and Lo bring ot points of theorclical intorest speeifie Lo these applications.
Aceordingly, computational procedures and simplifications are not stressed much
and hardly any tables are given. A more detailed and non-mathematical discussion
of these applications, together with a number of tables, charts, and compulational
simplifications, is contained in “Sequentin] Analvsis of Stalistieal Data: Applica-
tiong,” a report prepared by the Statistical Research Group of Columbia University
and published by Columbia University Press, Sepl., 1945, This report will be
referred to hereafter simply as SRG 255.

a3
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tomary in acceptance inspection. Thig, of eourse, does not mean that
the test procedure is not applicable to other cases as well. In the
terminoclogy of acceptance inspection, our problem may be stated as
{ollows: A proper sampling plan (test procedure) is to be devised for
deciding whether the lot submitted for inspeetion should be accepted
or rejected.

5.2 Tolerated Risks of Making Wrong Decisions

Any sampling plan which does not provide for complele inspeetio
of the lot may lead to a wrong decision. That i, we may accept the
lot when p > p/, or we may reject the lot when p = p’. Sincg{coin-
plete inspeetion is frequently not feasible, or too aostly, we ar@\willing
to tolerate some risks of making wrong decisions.  In ordeny t devise
a proper sampling plan, it is necessary to state the m:}.xjiﬁuuil risks of
wrong decisions that we are willing to tolerate. AN\

If p = p’, the quality of the lot is just on the Mirgin and we are
indifferent which decision is made. Tor p > plpiveé prefer to reject the
lot and this preference increases with increasitdg Yalue of p. Forp < 9/,
we prefer to accept the lot and this pref(;trém::e increases with decreas-
ing value of p. If p is only slightly z}b.iaj.-'é ¢, the preference for rejec-
tion is only slight and acceptance. ofthe lot will not be regarded as an
error of practical consequence.,jﬁi‘[hilé:t-rly, if p iz only slightly below
p', rejection of the lot Is nofa serious error.  Thus, it will be possible
{0 specily two values po apd\pl, po below p’ and py above p’, such that
acecptance of the lot fs\ﬁse’garcled as an error of practical consequence
if (and only if) p =@, and rejection of the lot is regarded as an error
of praetical hnpm‘iﬁiﬁ&z if (and only if) p = po. I1f p lies between g
and p; we do.jnfo‘t‘care partieularly which decision is made.

After the(tio values pp and p1 have been chosen, the risks of mak-
ing wrot Nlecisions which we are willing to tolerale may reasonably
be fp@ﬁla.ted ag follows: The probability of rejecting the lot should

&s;ekcecd some small preassigned value & whenever p = pu, and the
&babﬂity of aceepting the lot should not exceed some small pre-
assigned value 8 whenever p = Py1.

Thus, the tolerated risks are characterized by four numbers, po, P1,
«, and 8. The choice of these four guantities is not a statistical prob-
Jem. They will be selected on the basis of practieal considerations in
each particular case. A proper sampling plan can be determined, as
will be shown in the next section, after these four guantities have been

chosen.
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6.3 The Sequential Probability Ratio Test Corresponding to the
Quantities pg, p1, a, and B

6.3.1 Derivation of Algebraic Formulas for the Test Criterion

A sampling plan satisfying the conditions that the probability of
rejecting the lot does not exceed « whenever p = py, and the prob-
ability of accepting the lot does not exceed 8 whenever » = Py, 15 glven
by the sequentiul probability ratio test of strength {er, 8) for testing
the hypothesis p = py against the hypothesis p = p. This test is
defined as follows (see Seetion 3.1): Let 2 denote the result of the
ingpection of the 7th unit; that i, 2; = 1 if the 7th unit nspocted iy
found defective, and z; = 0 otherwise. If p denoles the jirdportion
of delectives in the lot, the probabilily of obtaining a smiple coqual
to the observed (zy, « - -, 2,,} is given by A\

(51) pd"‘(l - p)m_-dm .m"\\.

where d,, denotes the number of (lefect.i\':o..‘\iﬁ the first s units in-
spected.* Under the hypothesis that ={pY the probability (5:1) be-

comes equal to P\
(5 2) Pl = pld:n{:{“_ pl)m_dm
and under the hypothesis thﬁ;.:’};; P the probability (5:1) hecomes
equal to K
#8J
(5:3) \}ao = po™™ (1 — pg)™ "

The sequential;p?ﬁﬁabiliﬁy ratio test is carried out as follows, Af cach
stage of t-hgié}ﬁec-tion, at the inspection of the mth unit for each posi-
tive inte%fg,l"valuc m, W¢ compute

1—
G log T = d10g ™+ m — dy) log -
J Pom o I - o

Inspection is continued as long as

it 1 -
(5:5) log 1—'8-—- < log Pim < log Elnl

- Pom 44

* The lot is assumed to be sufficiently large so that the successive obscrvations
Ty, ¥z, * ¢, efc., may be regarded as independent.
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Inspection is terminated the first time that (5:5) docs not hold. If
at this final stage we have

Pim 1 8
g m———

Pom o

(5:6) log

the lot is rejected, and if
8
Pom l -«
the Iot is accepted.? n
Inequalities (5:5), (6:6), and (5:7) can easily be seen to be equivas

lent to the following inequalities: e Y
'S\
B 1 _ A N/
log — — log -- —R RO
]_ — & 1 — pl ""..
(5:8) +m Sl <
2 1 —m n 1 - &)
log — — log log — — log
Po 1= po ro 1 e
R
1 —3 N\ 1 -
log—— OO log Po
o ,; —"_ . p‘l
D1 S gt T —m
log — — 4 log -— — log
po T 1 = po Do — Po
o\
1 “s‘:@ I — o
log K% log -—- - -—
A (nd 1 — FA
(5:9) G = - + m— —
log _ log — B log LA log -— it
Do 1 —po Po —
and \\, ’
W\ Jii 1 —po
AN log - log
;”\"d < l -« n 1 - P1
= AnkJ < m
(D\ T m 1—m Y21 T—m
log — — log log — — log ——
Po 1—pa Po L =m0

Tor each value of 7 we shall denote the right-hand member of (5:10)
by @y, and call it acceptance nuraber. Similarly, we shall denote the

s Phere is a slight approximation involved inthe use of the constants log [8/(1 ~&]]
and log [(1 — 8)/e]. For further details see Bection 3.3,
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right-hand member of (5:9) by r, and eall it rejection number, For
purposes of practieal eomputations, the use of the mequalities (5:8),
(5:0}, and (5:10) seems to be much move convenient than the use of
the original inequalities (5:5), (5:6), and (5:7).* On the basis of in-
cqualities (5:8), (5:9), and (5:10), the sequential probability ratio test
is carried outb as follows. At each stage of the inspeetion we compute
the acecplance nwinber a,, and the rejeetion nwmber rn. Inspection
is continued as long as a,, < d,, < r,,. The first time Lot t,.. ddoes not
lie between the acceptance und rejection numbers, inspeetion is termi-
nafed. If o, = r,. the lot is rejected, and i o, = a,, the lot'id\ae-
cepted. L\
S )\
5.3.2 Tabular Procedure for Carrying Out the Test”.‘;‘ .
\ 3

The acceptance number

L
| 3 1 ]. . Ty
og — - N\ A
1l — ’::&3 1 —
(5:11y  a, = + mi ==
! 1 —n NSV I —pm
log =" — log —— Mg - —log
o L =20 3 o — Mo
and the rejection number , ”
1 L% 1 —p
log ,—i—:~\— - log . o
L -9
{6:12) 7, = - e\ + m s
) L—p Y2 1—pm
log="~ log - - — log — — log ——
WP T —p B 1 —py

{
depend o :jzin the quantities po, p1, @, and 8, Thus, they can be
comput-,e@ and tabulated before inspection starts. If a4, 13 not an
Integenwe may replace it by the largest mteger < a,,. Similarly, if
m(}?s “not an integer, we may veplace it by the smallest integer
> T

As an illustration, eonsider the following example. Let py = .1,
P =.3, a= .02 and 8 = .03. The acceptance and rejection num-
bers, as well as the results of the observalions, in an experiment are

i The use of the inequalities (3:8), (5:9), and (5:10} instead of (5:3), (5:6), and
(5:7) was first suggesied by J. TL Curtiss.  In SRG 255 similar transformations
of the incqualitics defining the test procedure have been used in other problems
ag weil,
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given in Table 5. In this example, inspection is terminated at m =
22 with the rejection of the lot.

TABLE 5

m dm

a 7.
Number i Number S
of Tnits Acceptance of Defeots Rejection

Inspecled Number Obzerved Number

N
P
V

96 e R
/?'1 :
.

X}\
Ve

3
p
o

a1

el e s B s B B =T - T = i = - L - R |

N fix
P

Y
\ A
4

4

3
7

._.
(=]
2
£ A
7,
7
v 4
7,
"
7,

=t
o 1
.’3
z{/’axooo:

N

= —
el —

Y
7

~
mamcxmcnczzn&p&wmw.—n.—u;_n_”—»—‘oc

-1 =

‘
7
N
fav]
B T pe =
3 b B2 DD BB — B e

30

5.3.3 OGraphical Procedure for Carrying Out the Test

The test procedure can also be earried out graphically. The num-
ber m of observations is measurcd along the horizontal axis and the
number d,, of defects along the vertical axis. The points (m, a,,) lie
on a straight line Ly, since a, 1s a linear function of m. Similarly the
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points (m, r,) lie on 4 straight line Z;.  The intercept of 7y is given by

ﬁ
log — ——
1 — «
(5'13) }.’.g =
log, — — Jog - - il
Po 1 — o
and the intercept of L, is given by
1 —
log - '8 N\
- T
(5:14) I = ] L\
) —p
log oL log —— n ®)
H T —

l‘n"
W)
The lines Fg and Ly are parallel and the common sldpe is eqnal to
0 I 1
AV

\ 4

log - I —

Iy N

l - M \\J

(5:15) s = =
NS & m

Dy
log -- — logt—
Do ‘».;&I —

The two straight lines g and I,), ,:‘Elo drawn before inspection starts,
The points (m, d,,) are plotteds -8 inspection goes on.  We continue
inspeeting additional units@gMong as the point (m, d,,) lies between
the lines Ly and L. In.apet tion is terminated the first time that the
point (m, d,,) does notﬁ\e between the lines Lg and £, If (m, d,,) lies
on Ly or below, the, Iqr is accepted. If (m, d,,) lies on Ly or above, the
lot is rejected. W&/

Figure 11 s}fbws the graphical proeedure for the example given in
Section 5.3

A M
wabd,,
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5.4 The Operating Characteristic {OC) Function L(p) of the Test®

54.1 Determination of L{p) for Some Special Values of p

As defined in Scetion 2.2.1, the value of the OC [unction L(p) for
euch p is equal to the probability that the lot will be aceepted when
p Is the true proportion of defectives in the lot. One can easily verify

that / j

{5:16) Ly =1 and L1} =10

Since the test procedure is so set up that the probability is 1 —g@n
that the lot will be accepted when p = py, and the probability, is\3

that the lot will be accypted when p = py, we have )
. e A\ N
v \.
(5:17) Lip) =1 —a and Lip) =58 A\
1— 4D
log . Po ~“’~.\\
When p=3g= o \
" 1 —,'Qt'
log —- — log X
Po N po
we obtain from equation {(3:43) D
1 -
J log —
O By

(5:18) L{s) = Ty o L |

log L;*xg + ‘ log b
\\a~ l —«

where b and f; arge ¢Be intercepts of the lines Ly and Ly.®

Thus, five poist§én the OC curve corresponding to p = 0, 1, py, 1,
and s can imMediately be determined. Since L{p) is monotenically
decreasing\ &ith increasing p, the five points will determine fairly
closcly the ‘shape of the whole OC curve. This will irequently be suf-
ﬁc-ieni(fdf practical purposes and there will be no need to compute Lip)
@@dditional values of p.

5 The formulas given in this section involve an approximalion caused by negleeting
the excess of 4, over the boundaries gx and rm 0t the terminntido of the test proce-
dure. For details see Sections 3.4 and A.2.3. An cxact formula for L{p) is given
in Seotion 5.4.3 for the special case in which the slope s of the decision lines is equal
to the reciproeal of an integer.

8 When p = s, the value of A in formula (3:43) is equal to 0. The limiting value of
the right-hand member of (3:43), when A — 0, is equal to Ej% which 1s

cqual to the right-hand membm: of (5:18), since 4 = (1 — @)/aand B = /(1 — ),
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5.42 Determination of L{p) over the Whole Range of p
It has been shown in Chapter 3, equations {3:45) and (3:4G), that?

)
— . _ 1
(5:19) L(p) = -

| -G

where A Is determined by the equation

l ) A
— o AN
(5:20) p = - p O
G- oF
Po L—p/ \\ '
To compute the OC curve, it is nob necessgny Lo solve equation

(5:20) in h. For any arbitrarily chosen value®, the values of p and
L{p) may be computed from (5:19) and (’ ). The point [p, L(p)]
computed in this way will be a point on .t‘hci OC curve. The OC curve
can be drawn by plotting a sufficie 11tlyy Iarge number of points [p, L(p)]
corresponding to various xalues oth Figure 12 shows a typical OC

curve, ol |
Lip) )

Y o 1 2
Fic. 12

The'range of & in (5:19) and (5:20) is from — = to 4. It can be
verified that the right-hand member of (5:19) is increasing with In-
creasing A, and the right-hand member of (5:20) is decreasing with in-
creasing h. The five values of p considered in Section 5.4.1, that is,
p = 0, pg, 8, p1, 1, correspond to the values of h = +»,1,0, —1, — =,
respectively, as can be seen from (5:20). Letting h = + o, 1,0, —1,

7In the formulas given in SRG 255, p. 2.50, the quantities p and L{p) are ex-
pressed in terms of another parameter £ which is functionally related to A.
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— = in {5:19), we obtain the corresponding five values of L{p) which
coincide with those given in Section 5.4.1.

If the part of the OC curve corresponding to positive values of A
has been determined, the computation of the part of the OC curve
corresponding to negative values of k can be simplified.? To show this,
let h be o given positive value and let [p, L{p)] be the corresponding
point on the OC curve. Let [p, L(p")] denote the point on the OC
curve corresponding to —A. Then we have

1 — —k
e
(1 —ﬁ>_h ( B )_h A\

) o
D 8
. o 1 —w e ’.“\,\\'
D265
a l—a o “':'1.\ 1 —a
( 8 )I; (] _ﬁ)h( :ﬂ;’)h
o) Bl Al A & e
()~
1 — a"<-_\“ I3
O /1By
5 R 8\
- p; :' ra 13 1 -3 !:=(l —Ct') L(‘U)
's\l J—
,:\'~" (l ——a) ( @ )
Similarl \Y

LAY, Y:.{\wl (1__:-&>—Ja (E)h(l — pl).ﬁ_ (p_}-)k

- ,, 1 — o _ \po/ M~ po Po
S R T ) T

Fo I —pe 1 — Fo
a)-
- (p‘)h( T ()

po/ (1~ ?:g>"_ (g)’* po
1 — o Do

% A gimilar simplification is given in BRG 235, p. 2.50, with reference to the

(b:21) Lip) =

parameter o used there.
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Thus, the point [p’, L{p”)] corresponding to —h ean be computed from
the point [p, L{p)] corresponding to A by using the simple relations
I
. p , B
p = (f‘ p and L{p") = (————) L{p).
Do 1
5.4.3 Exact Formula for L(p) When the Reciprocal of the Slope of
the Decision Lines Is an Integer
The quantity z, te., the logarithm of the probability ratio for
a single ohscervation, can take only the values log (p/pe) and

log [(I — p) /(1 — pey]. It follows from (5:15) that £\
} 1 1 — A\ ¢
log L (— — ]) log -—- B )
P 5 1 —m ‘\

where g i the slope of the decision lines.  Assumoe Hk‘tb« ‘3 i3 an in-
teger. Then the two wvalues of 2z are integral .mu Miples of d =
log [{1 — py) /{1 — p}), namely, —d and [(lfs) ﬂ—""hrf and the results
in the last part of Secfion A4 can he used to_dptermine the exact OC
curve.! On the basis of these results onc ea‘ﬂ show that

i {]nw 4.]
o (Hy‘— UH(u;—uJ)

N

L(p) = —=

1

s L [Tlopg A | lor B
2 s 0T K :l [

;

N\
\\Z (u; — 1} I I (uy — u)

i1

where A and Bﬁre the constants used in the bequentml test,1® the
symbol [k} d(;th;cs the smallest integer = k, and wq, ug, -+ -, #; are the

roots of %ﬁ"t}ﬁuation 5
N5 1 .
K\ 1— p—— =
RN ( P+ p i, 1 v/
O\ u*

\™
\A different method for deriving an exuct formula for L(p) was given
by M. A. Girshick in The Annals of Mathematical Statistics, Vol, 17
{1946). Ilis method does not require the computation of the roots
Uy, o, Uy

*To reduce this case to the ease discussed in the last part of Section A.4, one
merely has to consider the test corresponding to z*, A% and B* whore 2* = —3,
log A* = — log B and log B* = — log 4.

1 To obtain a lest of strength (e, £), we used the approximate values 4 =
(1 — g faand B = 3/(1 — a).
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5.5 The Average Sample Number (ASN) Function of the Test

Let n denote the number of observations required by the test pro-
cedure. Then # is a random variable, since it depends on the outeome
of the chservations. The expected value of n depends on the propor-
tion of defectives in the lot and is denoted by Z,(n). This cun be
plotted as a curve, p being measured along the horizontal axis and
Ey{n) along the vertical axis. A typleal ASN curve is shown in Tig.
13. This curve is called the ASN curve of the test (see Section 2.2.2
for a general definition of the ASBN curve).

E,(n) O\’

° ."
Fig, 9

The gencral formula for the ﬁéN funetion of a sequential probability
ratio test is derived in Section'8.5. The approximation formula (3:57)
applied to th_e_@go_rpia_lo\bglsc gives !

N Lip)log B + (1 — Lip)) log 4
{5:23) Ep\(n}'= > —
Y. N 4 1
\J log— + (1 — p) log —- =
{\ P Po L —po
where ‘é'g“('l — B}/a, B=B/(1 —a), and L(p) denotes the prob-
abilirqrf'fthat inspeetion terminates with the acceptance of the lot.

Sy ¢ this formula, we shall compute E(m) for p = 0, po, P1, and 1.

Shfce L(0) = 1, the value of Eg(n) is given by

log

B(n) = l —

(5:24) p(n) = T
log

1 - o

4 The right-hand member of (5:23) can he cxpressed us a function of L(p), the
intercents, and the slope of the deeision lines. See SRG 255, p. 2.63.
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when p = 0. For p = py, we have L{p) = 1 — o and we obtain from
{5:23)

i—p
(1 — @) log i + alog ——
1 — o
(5:25) E, (n) =
P1 1 —m
polog — + (I — po) log
Po 1 —po

For p = py, we have L{p) = 8 and we obtain from (5:23)

N
e 1—-38
g log + @ =Blog— — A
1 — « a K\
(5:26) Fp ) = O
1 — ?‘?1 W
P1 10g—+ (1 —pi) log — <%
Po Josvpo
&
Since L{1} = 0, we obtain from (5:23) \%
1,8
log ~<—-
Nz
(5:27) Euyn) = =2
™} N
SN log —
NN Lo
when p = 1. Q2

Using formula (A 99)"@ the Appendix, we can comptte the value
of E,(n) when pis equal\to the common slope s of the aceeptance and
rejection lines, Le. ,\"hen 2

O 1 — g
>\ log —— -
\% p= l—m .
O ’\ log& — log 4
\“ Po 1 —

Frqm }A 99) we oblain

<o (e ) ()

(5:28) Ein) = )

where F,(z%) is the expected value of 2% and z is a random variable
which can take only the values log (p1/p) and log [(1 — p1)/{1 — po)l

12 The value s of p corresponds to the value # in formula (A:09). Tt ean be shown
that s fies belween m and g Formula (A:99), and therefore also (5:28), involves
an approximaiion caused by neglecting the excess of the cumulalive suin over the
boundaries.
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with probabilities s and 1 — s, respectively. Thus

z 1 — o
s (log E) + {1 —38 (log pl)
Po 1 -— ‘pn
2 1 — a 1 — 2
s [(log 1ﬂ) — (log 101) ‘l + (]ug— P1>
Po 1-p/ . 1 —po

1— » 1 — 1 - 2
(log . D) (log ) + log — ?—1) + (Iog . 101)
P Po — Pu — P
~— LA

Il

(5:20) Ei(%)

1l

Fy 1 - N
= log u log i AN
Po I — 1 N\ v
From {5:28) and (5:29) we obtain ;"}}. )
B R N
—ilog 1—a log )
" — o @
(5:30) E.n) = AN
™ 1 _op‘)\
log — log —=~—
P ASIM

The determination of the five points, of the OC curve, as given in
(5:24), (5:25), (5:26), (5:27), andyl5:30), may frequently suffice in
practice, since these five points glready give a fuitly good idea of the
shape of the whole curve. Ahe "ASN curve penerally increases as p
inoreases from 0 to po, andidécreases as p increases from py to 1. In
the interval (pg, p1) tl AAGN curve generally inereases as p Inereases
from po to some vale 7, and decreases as p inereases from p’ to pr.
The value p’ is geberally equal to § or 1§ very near S.

Ifitis desi;‘i{l..to plot the ASN cwrve over the whole range of 2, 1t
is pecessaryhivst to compute the OC funetion L(p). The value of
Eyn) cg&i&u easily be determined from (5:23} for any value p.

5.&:':§Bservations Taken in Groups

\5:6.1 General Discussion

For practical reasons it may sometimes bc preferable to take the
observations in groups, rather than singly. That is, the test procedute
is carvied out as follows. A group fi consisting of » units is drawn
from the lot. If the number of defectives d, in this group g1 is less than
or equal to the acceptance number &, inspection terminates with the
acceptance of the lot. If d, is greater than or equal to the rejection
number 7, inspection terminates with the rejection of the lot. If
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ay < dy < 1y asccond group ¢y of v unifs is dravwn.  Again, the lot is
accepted if the total number of delectives s, in the two groups is less
than or equal Lo az,, the lot is rejected if dey 2 rs,, and a third group
g2 of v units is dawn iF e, < day < vy Thils process iy continued
until cither rejection or acceptunee of the lot 1w decided. Thus, when
the observations are toaken In groups of » units, the number d, of
defectives {found iz compareed with the um'r(fspnndinr=' aeceptance num-
ber a, and rejection number r, only for m = ¢, 25, 30, -+ - ote,
The purpese of this seelion is to make =ome (()Illll!f.lllh om the cflect
of grouping on the OC and ASN curves of the sampling plan.  Clearly,
grouping cah only incrense the number of observations requirgd by the
test.  For, suppose that nspeetion terminates ab the wih mﬁ‘t when
obser \-‘.l.f,mn.s are taken singly. T v s equal to an integy: A, multlp]t‘ of
v, i.e., n = kv, then the munher of groups inspeeted, \“\h(‘.n() muervations
are taken in groups, will be precisely equal to £, auddbhe tofal number
of units inspeeted will be the same ax when Jepvations are taken
singly,  However, if e <n < (54 1, gl‘QtLping will eause an in-
crease in the amount of inspection, sinee K& ®hall have Lo inspect at
least (& + 1) groups, that ix, at least Ub—{— e units, It may even
happen that we shall have to inspeet fare than (& + 1) groups. This
will be the ease when o, lies ontsides the interval {a,, 7.), but @ ry»
< kg e < tgan e hus, thefjhéreuse in the evpectod number of
unils inspected cansed hy gl’@l.giﬁiug muy even exceed ¢ in somoe cases.
Regarding the effect ofrouping on the OC curve, the foil(m-'ing
remarks may be made.¢ 1‘m‘rmg_, A=l —3ieand B=g/(1 —al,
the probability o of \Q\evtmﬂ the lot when p = 9 and the probability
8" of accepting the Yot when p = p¢ will be only approximately equal
to « and 8, 1'ps}§eh?t.ivcl‘\_-', evern i the observations are laken singly.
This was pohﬁed out in Section 3.3, where the following inequalities

were delxe

(5 31) o = . and £ ——
1—4 1l —«

\N- 3(:;111 easily be verified thal these inequalities alao remain valid when
the observations are taken in groups. The quantities « and 3 are
usually very small and o/(1 — 38) and /(1 — &) are very ncarly equal
to « and 8, respectively. Thus, also in case of grouping, the voalized
values o and @ cannot exceed the intended values o and 8, respec-
tively, except by an exceedingly small quantity which can be neglected
for all practical purposes.  This means that, for all practical purposes,
grouping will not decrease the protection against wrong decisions pro-
vided by the test. The only possible effect of practical significance that
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may be caused by grouping is that it may make o’ or 3 substantially
smaller than the intended vulues « and 8. This feature of grouping
compensates, to somoe cxtent, for the increase in the number of ob-
servations.

It may be of interest to remark that, if the number » of units in a
group is equal to the reciprocal of the common slope s of the accept-
ance and rejection lines and if the intercepts of these lines are integors,
the OC curve is not affected at all by grouping.’ This can be seen as
follows: DBecause s = 1/d, we have @uiq = a, + 1 and 7,40 =
7, + 1. Furthermore, since the intercepts of the acceptance and. :éN
jection lines are assumed to be integers, a,, and 7, have integral values
for any m which is an integral multiple of ». If item-by-item {nwpec-
tion leads to acceptance of the lot at the nth item, then » m{sﬁ be an
integral multiple of », and thercfore Inspection in groups O will also
lead to acceptance. If item-by-item nspection leady l;Er rejection of
the lot at the nth item, then we have d,, 2 .. LeN ?Ef.\be the smallest
integral multiple of v greater than or equal to «. Thcn tly = 7y, sinCE
d, is an integer, d, —r = 1, and rpe — 10 = '1.\\H0m-'-0 dor = 1, and
inspection in groups will also terminate withagjection of the lot. Thus,
ingpection in groups leads to cxactly thie\same decision as item-by-
item inspection and consequently grou‘pi'z'l'g"does not affect the OC carve.

5.6.2 Upper and Lower Limitjs’"fér the Effect of Grouping on the
OC and ASN Curves,_

Upper and lower limits g?orgthe effeet of grouping on the OC and ASN
curves can be Obtaine{’\by considering the following three auxiliary
sequential sampling plans. Let by be the intercept of the neeoptance
line, h; the intercept of the rejection line, and s the common slope in_
the given samplipg plan. The first auxiliary plan is obtamed by
changins g Aothy = hy — vs and leaving £; and s unchanged. The
second aug'" ry plan is obtained by changing £y to Jy* = Ay + 5,
leaving, h} and s unchanged, Finally, the third auxilinry plan corre-
spggldéf to the intercepts ko*, ky* and slope 5. Let Lip) denote the

Function and E,; (n) the ASN function of the auxiliary plan 7, when
item-by-item inspection is used (7 = 1,2,3). Furthermore, let Lip)
denote the OC function and Ep(n) the ASN function of the given plan
when item-by-item inspection is used. When inspection is made in
groups the OC and ASN functions are affected,™ and we shall denote
them by L{p) and E,(n) respectively.

15 See also SRG 255, p. 2.30. _

11 Exeept, in the case of the OC function, when the number of units in the group
is the reciprocal of the slope, as stated in Seetion 5.6.1.
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It can easily bo secn that whenever the first auxiliary plan (using
itern-by-item inspection) lends to the acceptance of the lot, the orig-
inal plan (taking observations in groups) als<o leads to acceptance.
The converse 18, however, not necessarily true.  That is, it may happen
that the auxiliary plan leads to rejection of the lot, whereas the original
plan leads to acceptance.  Thus, we have

(5:32) Li(p) < L(p)

Similarly, one ean verify that whenever the sceond auxiliary plan
{using item-by-item inspection) leads to rejection of the lot, thesorig-
inal plan (using grouping)} also leads to rejection.  Ilence

N

(5:33) 1—Lyp) £ 1~ Lip) A2
This can be written asg i ("'f;,\.
(5:34) TAp) < La(p) \‘

From {6:32) and (5:34) we obtain RN :

(5:35) L(p) = Tp) =LA

To derive an upper limit for £,(n] We shall make use of the third
auxiliary plan. If this plan (using"i%knn-b_\_-'-itmn Inzpection} terminates
at the inspection of the nth it ‘the original plan (using grouping)
must terminate at the latest.i\jiih the inspeetion of the group in which
the nth item is included\ Hence, the number »’ of units inspected
when the original pl;.}n“:l\s used cannot exceed n +4-#. I'rom this it
follows that N\

N

(5:36) Ey(n) £ Epln) +v
P
Since B, (n)yevE,(n), we obtain the limits
\Y —
(5:37) \.\\~ Eyn) = E,(n) < Epy(n) +

’T.Qfﬁ?ts for L(p} and E,(n) could also be derived by using the method

‘deseribed in Beetions A.2.3 and A3.1 of the Appendix. The limits

\gjifen in (535 and (3:37) will be rather close when pq/py and
(1 — p;i}/(l — pgo} are near 1 and vs does not exceed I.

5.7 Truncation of the Test Procedure

The sequential sampling plan does not provide any delinite upper
bound for the number # of units to be inspected. Any large value of
n is possible, but the probability is small that n will cxeeed twice or

15Tt i3 possible, of course, that inspection terminates with an earlier group.
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three times its expected value. It is sometimes desirable to set o
definite upper bound ng for n, excluding even a small probability that
n may exceed ng. This can be done by truneating the sequential proe-
ess ab » = ng. That is to say, we terminate the process at n = #y
even if the regular sequential rule does not lead to a final decizion for
n < ng. The following scoms to be a reasonable rule for deeiding
acceptance or rejection of the lot at n = ng if no deeision is reached
for n < mny with the regular sequential procedure: If d, =
(@ny + Tng)/2 we reject the lot, and if day < (ny + Tno)i/2 we aceept
the lot. A
Truncation and its effect on the OC curve are discussed in Sectioh
3.8. If ng is put as high as three times the expected value ofn.ﬁ,:jt'he
offect of truncation on the QC curve is negligibly small, s\ir‘g\n ‘the
probability is nearly 1 that the regular sequential proc:cdum{j{ill termi-
nate for n < ng. O *
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Chapter 6. TESTING THE DIFFERENCE BETWEEN THE
MEANS OF TWO BINOMIAL DISTRIBUTIONS (DOUBLE
DICHOTOMIES)

6.1 Formulation of the Problem ~
Suppose that we want to compare the effeetiveness of twe \pmduc-
flon processes where the elfectivencss of a production ]n-gr'\és?éis meas-
ured in terms of the proportion of effective units in the defjuence pro-
duced. Wo shall say that o unit ix effeetive if it hagadiccrtain desivable
property, for example, if it withstands a certain g, Let p; be the
proportion of effectives if process 1 s used, andvie the proportion of
effectives il process 2 is used.  In other words, p is the probability
that a unit produced will be effective if Iq‘\faeeﬁs 1 is used, and pa is the
probability that a unit produced willMe biffective if process 2 is used.
Suppose that the manufneturer n‘.hg{j-.s’n’ot know the values of py and
pz, and that process 1 is i opepgtion. If py = py, the manulacturer
wants Lo retain process 1, j-}b\%'"ever, if py < ps, especially i py d8
substantially smaller than gy, ‘the manufacturer would ke Lo repluace
process | by process 2. Thus, we are interested in testing the hypoth-
ezis that p1 = ps a;&?%t the alternative that py < poa.

A more general forthulation of the problem can be stated as follows.
Consider two binomial distributions. Lot 71 be the probuability of a
SUCCUSS I 4, Sifgrﬁ"le trial according to the first binomial distribution,
and let po, Ja;e}.lm probability of a success in o single trinl according to
the sceoid™hinomial distribution. We shall use the symbel I {for sue-
Cess ~s,i1:d the symbol 0 for failure. Suppose that the probabilities ;i
andp; are unknown. We consider the problem of testing the hypoth-

\st'."that Pt £ Pz on the basis of & sample consisting of & observations
from the first binomial distribution and N, observations from the
second binomial distribution. Since in many experiments the cuse
Ny = Ny is mainly of interest, and since this case (as we shall see
later) makes an exact and simplified mathematical treatment of the
problem possible, in what follows we shall assume that N; = Ny = N
(say). Thus, on the basis of the outcome of the Lwo series of N inde-
pendent trials we have to deeide whether the hypothesis p1 2 P2
should be accepted or rejected.

106
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6.2 The Classical Method

The classical solution of the problem for large A is given as follows,
Let 8 be the number of suceesses in the first set of N trials {drawn
from fthe firgt hinomial distribution), and let 85 be the number of sue-
cesses n the second set of N trials (druwn from the second binomial
population). Denole (S; + 82)/28 by pand 1 — 5 by ¢ Then for
large N the expression

(6:1) 8 — 5

V2N ~
is normally distributed with zero mean and unit variance if py = pv.
Suppose that the level of significance we wish to choose is a. Lot
e the value for which the prebability that a normal variate &ibh zero
mean and unit variance will exeeed A, Is equal to . (Fortexample, if
a = .05, Ay = 164} Thus, if p; = ps, Lhe probabili,t}i"th:tt the ox-
pression (6:1) will exceed A, Is equal to a1y 2 P"z‘,}\the probability
that the expression (6:1) will exceed X, is less thdute.  According to
the classical method, the hypothesis that plxg\pz i rejocted if the
observed value of (6:1) exceeds A,. This Irlet\.th)il involves an approxi-
mation, since the distribution of {6:1) Is fdt exactly povmal {for small
N it is far from normal), For small & Sun exact method has been pro-
posed by R. A, Fisher which, hO\\{ei';jl‘} involves cumbersome caleula-
tions. In Section 6.3 wo sh;}llf suggest another (non-sequential)
method which is exact and is {alrly simple to apply as far as compu-
tations are eoncerned. ThéJatter method has the further advantage
of heing suitable for sn\é;:m:ht-ial analysis, to which existing methods
arc not readily adaptable.

\ ¢/
6.3 An Exacj:..Q‘[ on-Sequential Method

Let aq, © ;\av\ be the results in the first set of N trials, and &y, - - -, by
the resulfs in the second sct of N trials. These results are arranged in
the pder observed. Congider the scquence of N pairs:

Let #, be the number of pairs (1,0) and £ the number of pairs (0, 1)
in this sequence. We consider only the pairs (0, 1) and (1, 0) and base
the test on them.

Let @ be the outcome of an observation from the first population,
and b the outcome of an observation from the seeond population.
"The probability that (e, b) = (1, 0) is equal to p1(1 — p2), and the
probability that (e, b) = (0, 1) is equal to (1 — p)ps. Henee, know
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ing that {a, b} Is equal to one of the pairs (0, 1) and (1, 0), the (condi-
tional} probability that il is cqual Lo (0, 1) ix given by
_ U =pope
pr{l — po} + pall — i}
and the (conditional} probability that it is equal to {1, 0} is given by

(6:3) P

?’1(‘ - '}’2)__ B
il —po + U = pyps

Hence, when only the pairvs (1, 0} and (0, 1} are eonsidered, the varite
ts 1 distributed like the number of successes In o sequence of =
fy + ta independent trials, the probability of & success in o sifgle)trial
being equal to p. One ecan casily verify that p = _1.--_i,.if.\p1 = Pa,
p<laifpy > po, and p > 1y i py < pe. Thus, thy(fif*pnt-hcsis to
b tested, Le., the hypothesis that p; = ps, s cquivalgngto the hypoth-
esis that p £ 14, Thus, we cun test the I1ypot.luw«-'a'§>th:mt- p = py by
testing the hypothesis that p £ 14 on the basizsob'the observed value
of & Sinee the distribution of £ is the samg 8 the distribution of the
number of suceesses in £ = ¢ + & indopentlénﬁ trials {¢ is treated as a
constant and the probability of a SLlcqe%§§~f11 a single frial is equal to
2), the test procedure can be carriod out in the usual muanner. If we
want 4 level of significance o, o (flﬁt-k1£L| value T 1s chosen so that for
p = 1% the probability that &, 28 is equal to . The hypothesis that
p = 14 is rejected if and onlx(f the observed {5 is greater than or cqual
to the eritical value T. Thb value of T can be obtained from a table
of the binomial distribwtion. If ¢ is large, f» is nearly normally dis-
tributed, and the critfeal value T can be obiained from a table of the
normal distributipal’

This procedyre-thus provides a simple test of the hypothesis that
7 2 pe. THe)question arises whother the efficiency of this method is
as high asgsfhz t of the classical method. It would scem that the method
sn.lgg(-z's't\éd‘here cannot be a most efficient procodure, sinee the values
of Ansund & depend on the order of the elements in the sequences
(a3 -, ax) and (b, -+, by), and there is no particular reason to
arrange them in the order observed. However, it has been shown*
that the loss in efficiency as compared with the clussical method is
negligibile if the number N of trials ig large.?

{6:1) l—p=

1 Bee the author’s report, Sequential Analysis of Statistical Date: Theory, sub-
mitted to the Applied Mathematics Panel, Nalional Defense Research Commiltec,
Sept., 1943,

2 The author believes that the loss in officiency is slight even when & is small
although no exact mvestigation of this case has been made.



SEQUENTIAL TEBST OF THE HYPOTHESIS TIAT p, = ps 108

It should be pointed cut that the procedure for testing the hypoth-
egig that pp = pe can be used zlso for testing the hypothesis that
p1 = pe if the alternative hypothescs are restricted to py > py.

In addition to simplicity and exactness, the present method seems
supcrior to the classical one in the following respect. Suppose that
(econtrary to the original assumption) the probability of a success varies
from trial to trial. Let p,*? denote the probability of success in the
7th trial of the first set, and let po'” denote the probability of success
in the #th trial in the sceond set (¥ =1, --+, ), Assume that the
probabilities p,@ and ps'¥ are entirely unknown and we wish to tests
the hypothesis that p;? — p = -+ = p;® — p,*™ = 0. In this
cage the classical method is not applicable, but the present mcthed
provides a correct procedure. Such a situation may arise, (or i({s}taﬁce,
il we want to test the hypothesis that the probability QF"I@ BUCCESS
(hitting the target) is the same for two different guns. Pa*the course
of the cxperiments the probability of a hit may changéﬁccause of ex-
tornal conditions such as wind or disposition of the\guhner. However,
these external conditions are likely to affect bethwguns equally if the
trials are made alternately (or approximatelfs alternately), so that if
the two guns are equally good we have py% = p¥ (# =1, --- N).

64 Sequential Test of the Hypotl}eéjs That p; Z ps

6.4.1 Risks That We Are Willing to Tolerate of Making Wrong
Decisions \

In order to devise a profer sequential test for testing the hypothesis
that g1 = pa, we havg%}; state first what risks of making wrong deci-
sions we are willing-fe.tolerate. The efficicney of production process 1
may be measurad $¢ the ratio of effectives to ineffectives produced,
ie, by kb = J}‘{l — ). Production process | may be regarded the
more cfﬁcié{t the larger the value of k. Similarly, the efficicncy of
pI‘OdllChiQ}:l\pI‘OCCSS 2 may be measured by kp = po/{t — pa). The
relativessuperiority of produetion process 2 gver process 1 can ther
ra@éﬁébly be measured by the ratio of &2 to &, ie., by

8:5) ke pell —p1)
D Bo=—=————"
( ko pi(1 — pe)

If w = 1, the two processes are equally good. If » > 1, process 2 is
superior to process 1, and if u < 1, process 1 is superior to process 2.
Thus, the manufacturer will, in general, be able to select two values
of a4, ug and uy, gay (uo < 1), such that the rejection of process 1 in
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favor of process 2 is considered an crror of practical Importance when-
ever the true value of % = w1, and the maintenance of process 1 is eon-
sidered an error of practical importance whenever ¥ = . If w lies
between 1y and w4y, the manufacturer does not eare particularly which
decigion is made.

Clearly, we will always have wy << 1. If the transilion from pro-
duetion process 1 to process 2 involves some cost or other inconven-
iences, it seems reasonable to put ¥y = 1 (0r w; may even be slightly
grester than 1), This choles of iy really means that we consider the
rejection of proeess 1 4 serious crror whenever this process 13 netihie-
rior to process 2. On the other hand, i the transition from prodess 1
to process 2 does not involve any inconveniences, the 1'ejecff.iéﬁ“@. proc-
ess 1 in favor of 2 cannot be 4 serious crror when the two processes are
equally efficient, i.e., when w = 1. Thus, in such a (*:.Lsg;ii‘ﬁ%'(z(}n'ls reasoh-
able to choose uy somewhat helow 1, RS

After the quantities %, and ; have been clisfen the risics that we
are willing to tolerate may reasonably e expytssed i the following
form: The probability of rejecting pt‘oees._"1;}:110111(1 not execed a pre-
assigned value « whenever «# = g, and¥he probability of maintaining
process 1 should not exceed a preassigntd value 8 whenever u 2 .
Thus, the risks that we are \\'illing.;tlj'“t;oler:ltc are characterized by the
four quantities uo, ur, &, and 8. &Y

~ ) §

6.4.2 The Sequential Probability Ratio Test Corresponding to the
Quantities u, ul\, a, and B
After the four (.111@1%1%95 g, Uy, @, and 3 have heen chosen, a proper
sequential test con\og carried out as follows. The {conditional) prob-
ability that wedbtain a pair (0, 1), as given in (8:3), can be expressed
as a functipJ{:{}f"u. In fact

A (1 —pipe
2\ % Pl — pa) + pa(1 — ) po(l — ) 1w
Q L= — 5
pi(l — p2)

Let H, denote the hypothesis that p = up/(1 + wuy), and H; the
hypothesis that p = w; /(1 + ;). A proper sequential test satisfying
our requirements concerning tolerated risks is the scquential prob-
ability ratio tost of Hy againgt Hy, The acceptance and rejection num-
bers for this sequential test ean be obtained from (5:11) and (5:12) by
substituting uo/(1 + uo) for pg, u/(1 + 1wy) for py, and ¢t = 4 + 22
for m.
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Thus, for each value of ¢ the zcceptance number is given by

1 —I— 73
log ! log T+
67 _ o -+ g
tog w; — log wup log #; — log ug
and the rejection number is given by
1 -5 1+
log log QY
o 1+ uy
{G:8) Ty = + i N
log uy — log uy log #y; — log ug N\
N

These acceptance numbers a; and rejection numbers 7, Q:; \1, 2, -+
are hest tabulated before experimentation starts, The wcqui*nbnl test
is then carried out as follows. ‘The observations m\ taken in pairs
where cach pair consists of an observation fromthe Tirst process and
an observation from the second process. Wey t'&n'tmua taking pairg as
long as @, < t; < r;. The first time that {g\d‘oes not lie between the
acceptance and rejection numbers, expcrlmentdtwn is terminated.
Process 1 is maintained if at this final stage I £ ay, and process 1 Is
rejected in favor of 21f & Z 7. ‘,:.7;

As an illustration, the follov,ljlg’ example 14 given. Let wy = 1.3,
w; =3, a = .03, and 3 =,20, The observed pairs (0, 1) and (I, 0)
in an cxperiment, and thg"'r}_]ectmn and acceptance numbers, are given
in Table 6, In this b.@smple the sampling process is terminated at
t = 18 with the r(‘ten‘omn of process 1.

The test protadure can also be carried out graphically as shown in
Trig. 14. Themtal number ¢ of pairs (0, 1) and (1, 0) is measured along

~G

I
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the horizontal axis. The points (f, @) will lie on a straight line L,
since @ is a linear function of &. The points (4, ry) will lie on & parallel

line I;. We draw the lines [ and Ly and plot the points (4, &) as
TABLE 6
t ot 2
Numboer Pairs v&cc: o Number e
of Pairs 0, 13, {1, 0| _I‘ " of Puirs | Rejeetion
(0, 1), (1, 0) | Observed NTll:l'l:or {0, 1) Numher I\
Observed “ | Ohserved
:,.\\ o
1 (0’ 1} 1 X % '\../
2 0, 1) 2 N
3 (1, 0) 2 (o
4 {1, o .. )
5 (1, 0} 0 e\
6 {0, 1) 1 \\3
7 {, 0 1 (U s
8 ©, 1) aOf 4
9 (0, 13 L8 5
10 (1, 0) ~N3 5
11 0,1) &S ! 6
12 oD b 7 ..
13 (0,1} 5 ] 13
14 (L) 6 8 14
15 000 7 8 i4
16 N D 7 9 15
17 (i, !, 8 jt] 16
1B (1, 0) 9 9 16
oy~ 9 17
RE 10 18
NN 21 11 18
O =z 11 19
A\ 23 12 20
~O 24 13 20
\V 25 13 21
26 14 22
27 15 22
28 15 23
20 16 24

experimentation gocs on. The first time that the point (¢, i) 18 not
within the lines Ly and L; experimentation is terminated. Process 1
is maintained if at the final stage (¢, f2) lies on Lo or below, and proc-
ess 1 iz rejocted if (7, &) lies on I; or above.
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The intercept of line Ly is given by

log
(6:9) hy = —_
log u; — log ug

and the intercept of L; is given by

1—-8
log
(6:10) by = ‘I
og uy — log
g U1 g U A\
The common slepe of the two lines is equal o A L
¢\
i NN T
]Og 1 + Y \
i, 7%
(6:11) 5 = 2 A\
log uy — log up '\\

6.4.3 The Operating Characteristic Curve of thie Test

Vor any value u of the ratio ko/ky, we shallvdenote by L(u) the
probability of maintaining process 1. Cleaxly, “Z(x) is a function of .
This function L) is called the operating eharacteristic function of the
test. It can be obfained from eqrzat-i@gs”(S:lQ) and (5:20} by substi-
tuting we/ (L 4+ ug) for po and ul.,{(‘l"*{— ;) for p. These equations

are:? ™
. (T~— ﬁ)’* ]
(6:12) L(ukﬁ‘.(]. — ﬁ)h ( 3 ),&
'...:.,,.‘ 1l —«
and P\
N 14w\
{‘\s. ]. - 1_;_‘“_
N/ u "y
6:13) O —— =
DN T3 (ul(l + tt-r:))"_ (Ei@)h
~O ol + 1) 14w

Equation (6:13) can be written as
! (1 + 110)"‘
1 + Uy
: U =
(6:14) (ul(]- + Itu))h 1

ug{l + 1)

3 In the formulas given in SRG 265, p. 3.38, the quantities » and L{u) are ex
pressed in terms of a “dummy’”’ variable # which i functionally related to &.
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For any given value & we compute « and L{x) from the cquations
(6:12) and (6:14). The point {1, L{u)] obtained in this way will be g
point of the OC curve. By calculating the points [, L{1)] for a sufh.
clently large number of values of 4, the OC curve ean be drawn,

We shall ecompute [u, L{w)] for h = —=, —1, 0, 1, +w. Since
L 4 g <1 ndul(l + o}

&
1+ 2y up(l 4 uy)

> 1, we obtain from (6:12) and (6:14)

(G:15) #w= o and Lfu)=0 whenf = —=

{3:16) w=0 and L{uwy=1 whenk=+= R S
Furthermore we obtain o~ ~

(6:17) =12y and L{u) =3 when b = (4.1,\

and m\:

(G:18) =1y and L) =1 —« \\'hc’n'h:= -+1

v

. (P
TFor A = 0, the expressions « and Liy¥ have the form 0/0. The
limiting values of u and L{u) when h —0véan be ohtained by differen-
tiating numerator and denominator at ¥ = 0. ‘Then we have

1+ 2y .~:,’" ' 1 -8
log ——— AN log -
1 + Ug @
(6:19) u= Wand  Liu) =
O —— e NF— [+ — g
8 uo(l \k\ul) & & . 1 —a
when kB = 0.

These five ppifxts'“on the OC curve already determine roughly the
ghape of the ,qtir'if'e. It can be secn that w is a decreasing function of
h and L(w){3 an increasing function of h. Hence L(«) is a decreasing
funetiond{of* w. As u varies from 0 to wy, L(u) decrenses from 1 to
I — al¥n the interval from ug to uy, L(u) decreases from 1 — a to
Brand as u varies from u, to + =, the OC function L{u) decreases

f}mﬁ B to 0.

6.4.4 The Average Amount of Inspection Required by the Test

For any value u of the ratio ky/ky, let E.(f) denote the expected
value of the total number of pairs {0, 1) and (1, Q) required by the
test. ‘The value of E,(f) can be obtained from (5:23) by substituting
% () for Ep(n), Liu) for L{p), ue/(1 + ) for P, 21/ (1 + wy) for p,
and #/(1 + ) for p. Thus*

* The right-hand member of (6:20} can bho expressed as o function of F(u}, the
intercepts and the slope of the decision lines. See SRC 235, p. 3.41.
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L{u) log . f + {1 — L(u)) log -

(6:20) .0 =

% wy (1 + wup) 1 I 4ug
log log
I+a "wldw) 14w 14w
To compute the expected value of the total number of pairs (in-
cluding also the pairs (0, 0) and (1, 1)), we merely have to divide the
right-hand side of equation (6:20) by 5;(1 — pe) + po(l — p1).
Since L{0) = 1 and L{=) = 0, we obtain from (6:20}

log
1 —a \\'
{6:21) E () = ——— whenu =10 N
. 1 4 ug O
log 7 T N\
(74 <Y
and ' D
1-5 AV
log G
[4
22 B (f) = =——————— when y =)=
o2 0w S
0. — o\
guo(l + 1) ‘\
Since L{ug) = 1 — e and L{u;) = 8,,it follows from (6:20) that
N 1-8
(1 —a log'%ﬁ— + alog
i W1 — = o
(6:23)  Eu) = o G+ ) 1 1+ u

and

1@ty log
T gDl ) 1w Uk

O A
;"8 log & + (1 =8 log——
N 1 o

(6:24) Eul@\:\ w (1 + ) 1 10g1+u0
SO S T T

In Se';:ﬂ'on 5.5 we have computed the expeeted value of n_when P
is€qnal to the slope of the acceptance and rejection lines. This corre-
Spoglds to the case when u/(L 4 ) = s, i‘e_‘, 1 = &/{1 — s}, where the
slope s is given in (6:11). The value of £,(t) for u = sf(l‘ — &) can
he obtained from the right-hand member of {5:30), replacing py by
w1 /(1 + ug) and pe by wo/(L -+ 1), Thus

8 1—-8
. Iog log
1 —-a @
(6:25) El—f.;(t) w(l +ug), 14w
og———log ———
ug(l -+ uy) 14 ua
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The determination of the five values of £,(f), as given in (8:21)
through (6:25), may frequently suffice In practice, since these five
points generally give a fairly good idea of the shape of the whole curve,

6.4.5 Observations Taken in Groups

In applications it may happen that, at each stage in the sequential
process, instead of drawing a single observation we draw a group of
v oheervations from each of the binomial distributions. ITence, nstead
of a single pair, we have two groups of » observations. The effect of
grouping on the OC and ASN curves has been discussed in 3 Section 5.6
and the results obtained there can be applied to the case unddr con-
sideration here. [f the order of observations in cach groug bf v is re-
corded, we can establish the number of pairs (0, 1) and ¢he number of
pairs {1, 0) {for each pair of groups of » 0])'—;(‘[‘\»3’5101’1&,» «;[n such a casge
the test can be carried out as described in SL('tlon 6.4.2, since after
each pair of groups of v ohservations we can com}mte t and {;. How-
ever, if the order of observations in such groups is not recorded, the
difficulty arises that we are not able to d,(,tbunme the values of ¢ and
ts needed for the test procedure. ..\‘

It has been shown ® that in such & chate we may replace ¢ and £ by
certain cstimates of ¢ and &5 w 1thout alfccting seriously the probability
of making an incorrect decision. The estimates of & and % (and therchy
also an estimate of £ = § +¢o) are obtained as follows, Tet z; be the
number of successes in the eroup of ¢ observations drawn from the first
binomial distribution, %md let vy be the number of successes in the
group of v observagi &ps ‘drawn from the second binomial distribution.
Then for this paiiof ‘groups of v observations we estimate the number
of pairs (1, O) to Yo #1 — (mog/2) and the number of pairs (0, 1) to be

— (nwa/uh, lhm an cstimate of f; is obtained by summing #
— (vlv / ;J}\gwer all puirs of groups observed, and that of £ is obtained by
PUTRIMING By — (v1v2/%) over all pairs of groups obscrved.

].*or, the effect of grouping on the OC and ASN curves, the results

. of Sectlon 5.6 can be applied, since the test procedure discussed here
Sgeduces to that considered in Section 5.6 when » = /(1 +w)
m—t1+tz t,andd -—ﬁg.

bSec the author's report, Sequential Analysis of Statistical Data: Theory, gub-

mitted to the Applied Mathematics Panel, National Delense Rescarch Committee,
Sept., 1943,



Chapier 7. TESTING THAT THE MEAN OF A NORMAL DIS-
TRIBUTION WITH KNOWN STANDARD DEVIATION FALLS
SHORT OF A GIVEN VALUE

7.1 Formulation of the Problem ~

Let z be a random variable which is normally distributed with, un-
known mean 8 and known standard deviation ¢. In this se&ti\(;n wo
shall deal with the problem of testing the hypothesis that fisTess than
or equal to some specified value &', "

Such a problem arises {requently, for example, in qﬁ@ﬁfy contro! and
acceptance inspection.  Suppose that a lot consisting.of & large number
of units of a manufactured product is submitted fet acceptance inspec-
tion. The number of units in the lot is assu et to be sufficiently large
s0 that the lot may be treated as conthining infinitely many units.
Suppese that the result of an observationis a measurement & of some
quality characteristic of the unit, su@h as the weight, or harduess, or
tensile strength, The value of 3 will, in general, vary from unit to
unit. It is assumed that z is nermally distributed with a known stand-
ard deviation ¢ but unknowmnean 8. Suppose, furthermore, that the
product is considered the Jnore desirable the smaller the value of 8.
Then it will, in gencralysbe possible to designate a particular value ¢
such that we prefef to accept the Jot if ¢ < 8 and we prefer o reject
the lot if 8 > §8X Thus, in such a situation, we are interested in de-
vising a sarnp’ﬁng plan to test the hypothesis that § < #.

Since q@my control and acceptance inspection is an important field
of appliéation for such test procedures, we shall continue the discus-
sion'ufai'hg the terminology of acceptance inspection. This, of course,
s%nfu.l\d not be interpreted as a restriction on the general validity and

ﬁ)ﬁlicabﬂity of the test procedure.

7.2 Tolerated Risks of Making Wrong Decision

If 9 = ¢, we are indifferent whether the lot is accepted or rejected.
The preference for acceptance ncreases with decreasing value of # in
the domain # < &, and the preference for rejection increases with in-
creasing value of 4 in the domain 8 > . “Thus, it will be possible, in
general, to find two values g and 8, (6, < & and 8 > &) such that

117



118 TESTING TIIAT THE MEAN IS BELOW A GIVEN VALUR

rejection of the lot is considered an error of practical conscquence if
9 = 65, and acceptance of the lot i considered an error of practical
consequence if & = §;; for values 8 between 8, and ¢ we do not care
particularly which deeision is tuken. Using the terminology introduced
in Section 2.3.1, we may say that the zone of preference for acceptance
consists of all values 6 for which 8 = 0, the zone of preference for re-
jeetion is the sct of all values ¢ for which 8 = 8, and the zone of in-
difference eonsists of all values ¢ between #y and ).

After the two values 8, and #; have been chosen the 1isks that we
are willing to tolerate may reasonably be expressed as followsd™\The
probability of rejecting the lot should not exeeed o small pwaasln‘ned
value a whenever ¢ < 6y, and the probability of ‘uu,m{m?f the lot
should not excoed a small preassigned value 8 wheney end = ;. Thus,
the risks that we are willing to tolerate wre Lll‘I.IstLlldl‘d by the four
numbers 8, 8y, «, and 8, RS

7.3 The Sequential Probability Ratio ’I‘{St Corresponding to the
Quantities em 8,,a,and B ..\

'

The requirements regarding the tulomivd risks are satisfied by the
sequential probability ratio test off strength (e, ) [or testing the hy-
pothesis that 8 = 8, against th&aﬁomdtn e that 8 = 8;. This sequen-
tial test is given as followssa et xy, &y, -+ -, cte., bhe the suceccssive
observations on 2. The p Krobablht} density of the f~d1ane (g, =y Tmd
is given by o - T

\ N\ ) 1 E] (2 b0
(7:1) ONMDom = TTm & =t
> (27) 20"
6 = g, aidby
\Q 1 - L % (r, —81)2
{722‘ " Pim = TTm € =
mJ (271_) 2™

\ )
if =8, The probability ratio p1,./pom is computed at cach stage
of the inspection. Additional observations are taken as long 2s

1

-8,)%
(7:3) B < Pim _ f_z:____
Pom 6_ 5% Slea—00)"

1 Bee, for instance, Scetion 2.3.2,
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Ingpection is terminated with the acceptance of the lot if

1 3
6_ 373 Tirg—81)

(7:4)

A

1
— _gnt
oot Z(rg—8o)

Inspection is terminated with the rejection of the lot if

! gt
¢ E‘—QE(:.I #1)

v

(7:5) A

~ o3 Hoa—80)? A
According to Section 3.3 approximate values of A and B are ,g;i}eh
by (1 — 8)/« and 8/(1 — a), respectively. O )
By taking logarithms and simplifying, the inequalitics £7.;§), (7:4),

and (7:5) can be written as 92\

N\
8 8 — b mo o, a1 —8
7:46) log < = Ty 4 — (B — K log ———
(7:0) Of = ; 202(0 :'\{; -
6 — fo 2 2\ .
(7:7) - To + — (B0° — HEYVE log
o L Ry ¥, — o
and .,,’:*' N
B — by MmNy e _
. - X - =1
(7:8) > ;xﬂ + oo’ — 0% 2 log —
respectively.

o\

Further simpliﬁca,ti%@n} carrying out the test. procedurc‘mn Le
achieved by adding (wm/20%) (8> — 6,°) to both sides of the incqual-
ities (7:6), (7:Th %ﬂﬁ"{?:S) and then dividing t-hese‘ il’lc(]‘Lla!ltICS L)y
(8, — 80)/o". ’],“\hése'operations transform the inequalities (7:6), (7:7),
and (7:8) into.L

N/

; 8 i
'6—log il tom o+ 1<

(7:9) =5
.\‘Gi — 1 — e 2 ,
\'\ m o? 1-8 bo + 6
Ty < log —— +m—_—
a=1 81 -0 « 2
a? | 8 n By + &
. = 0 m -
{7 :10) Za. = P 81 _ 2
d
an o2 | 1—8 n 6y + 6
: Zr, = of KL
(7:11) X, b — 6o a
respeetively.
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By using lhe incqualities (7:9), (7:10), and (7:11) the spection
plan may be carried out as follows.  For ench m compute the accept-

anece numboer
>

g ] & +
(7:12 @, = — —log +m— —
) # — O & I — 2
and the rejection number
o* 1—8 0 + 8
(7'13) Foo = — - —— 1(]8; — -+_ " L _1_'
1 — fo o 2

ON
These acceptance and rejection numbers are hest computed hefore in-
spection starts. Inspection ix continued as long ay a4, {.\'S?z,';, < Ty
At the first time when Sz, does not lie between a,, and o Epection
is terminated. The lot iz aceepted if Zr, = a,, ;mrl’u’ﬁ?l’mt is rejected
if 2oy = e '\\

As an illustration, consider the following exatwple. Lot 6, = 135,
8, = 150, a = .01, and § = .03. Turthermoxcplet o = 25. The ob-
servations and the acceptance and 1‘9]'@(11131{1‘3;1 umbers are tabulated in
Table 7, which shows that the sampling dnspection is terminated at
m = 20 with the acceptance of the lots

The test procedure ean also be eartied out graphically as shown in
Fig. 156. The number m of Ubg?ﬁ\?&ltiuﬂ:ﬁ is measured along the hori-

N

4000 4

3000

~
.{\l
\:"\‘.’ ) Q
N 0 5 10 15 20 25
V

Fia, 15

zontal axis. The points (m, @) will lie on a straight line Lo and the
points (m, r,) will lie on & parallel line 7,;. We draw the parallel lines

Lo and L, hefore inspecfion starts. The points (m, E z) are plotted
a=1

as inspeetion goes on.  Inspeetion is continued as long as the plotted

points {m, Zxa) lie between the lines Ly and Ly. Inspection is termi-

nated at the first time when the point (m, Tz,) does not lie between

——— -
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TABLE 7
e
m b z Cumulated T
Number of | Acceptance | Observed Sum of Rejection
Dhservations Number Value Observed KNumber
Values
1 151 151 334
2 139 144 295 476
3 281 121 416 619
4 424 137 553 761 O
5 566 138 691 004 A\
6 709 136 827 1046 (D
7 851 155 082 1180 ()
8 094 160 1142 13313
o 1136 144 1286 Adra 3
10 1279 145 1431 R
11 1421 130 1561 () 17an
12 1564 120 1681 ) 1401
13 1706 104 1788 2044
14 1848 140 1425 2186
15 1091 125 2050 2329
18 2134 | w6 [ \D2156 2471
17 2276 | 145 %" 2301 2614
18 2419 | 12BN 2424 2756
19 2561 o438 2562 2849
20 o704 0 M08 2670 a041
21 2546 "\‘ 3184
22 20867\ " | 3326
23 3@' i 3409
24 AN2274 3611
25 {416 ‘ 3754
\ &/

Ly and Ly, ilf’:}:‘iies on Lg or below the lot is aceepted, and if it lies

on I, or a\{)m*'e the lot is rejected.

The {.:Q?hmon slope of the lines Ly and Iy is given by

N\
\/ 90+91
y =

"I'he intercept of Lo is equal to

o2
{7:15) hg = Y log —
and the intercept of Ly is given by
(7:16) hy = ANt
' 8, — 6o a
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7.4 The Operating Characteristic (OC) Curve of the Test

Let L) denote the probability that the sequential test will lead to
the acceptance of the lot when 6 is the true mean value. The funetion
L(#) is called the operating characteristic funetion of the test. Ap-
proximate formulas for the OC funetion are derived in Scetion 3.4 and
the general resulfs are applied to testing the mean of 2 normal popu-
lation. [See equation (3:18).] It is shown there that

7:17 L ~ R
( ) ( ) ( ﬁ)h ( ,L‘} )fa , \"\.
P 1 — \ \3
where N
# + 8y — 20 ¢ 0
{(7:18) o ho= e~ " '"“.\
th — &y v/

It ean be seen from (7:17) and (7:18) tlx ’L(ﬂ) 1= an inereasing fune-
tion of i and 4 is a decreasing functlon Of Henee £:00) 1y a decreas-
ing function of 8.

For @ = —oo, 8y, (8 + 8,)/2, &1, -+- = the values of L) obtained
from {(7:17) are given as follmn & ‘
(7:19) L(if\) L, L) =1 —«
& \J 1 —
X\ log - HE
; (»90 Y- 91) B o
WO 2 1—3 B
ON log — —— — log
A\ @ —
\,\\"' L) =8
R\ @) =0
N

~O . ‘ _ ] . _
‘The computation of these five points of the OC curve will suffice iIn
many applications.

It may be of intercst to express L(#) in terms of the intercepts Ao

& f
2For g = 1—;—-2 we have b = 0 and the limiting value of the right-hand member

1—g
log
of (7.17) as h - 0 is equal to il
1—38 8
log — log
o l — o
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and kb and the common slope s of the lines Ly and L3 From (7:17)
and (7:18) it follows that

#1+8p— 28 1-8

log —=

- g Mt e -]
(7:20) L) ~ G0, 1-8  Ate—2 B
g fa—fo DET_. 8- -ty Rl g
2 2
. T 3 & 1 — &+ 8
Since iy = ———log Jhy = log ‘Gand g =1
b —by 1—a B, — 8y o 2
we ohtain from (7:20)
E! {s— &k 1
(7:21) L@ ~— 3 A o
Stk =0k ¢\
& —_— §

N
7.5 The Average Amount of Inspection Required by the\,’I{ég,tw

In Section 3.5 the following approximation formu ;«: dertved for
the expeeted value Fy{n) of the number n of observations required by

the sampling plan. \
':'\\./ _
L) log _— + [1 — B8 log
— O @
(7:22) Eg(n}) = —Cy™
Eafzy
where . :1 N
‘."‘:"'_ {z—01)?
. 8 28 =
(7:23) z = logﬂx’ v = Jog—
f(.'l:, 60) \'\ e'— ot x—op)?

&)

¢ \s,/ 1
:“\' =52 [2(8; — Bo)x + 6o° — 017]
and Ea(z) deno{é{s}sﬁe expected value of z when 8 is the true mean of z,
The value Qf@a(z) is given in Scetion 3.5, equation (3 :60).
\\ 3 ] 1 \ .
(720085 Ey(z) = — [2(80 — 60)0 + 65" — 617
~O 20
Hence
1—-8

L&) log] d + (1 — Z{#)] log

- & [ad

. -t =2 4 - -
(7:25) o) ’ 8,2 — 6, + 2(8, — 600

by + L8y (ho — Ha)
& —s
3 8ee aleo SRG 255, p. 4.18.
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where Ay and ky are the intercepts and & is the common slope of the
lines Ly and Fq.

For # = s, the right-hand member of (7:25) takes the form 00, Tt
is shown in the Appendix, equation (A:99), that the limiting value is
given by

1 -3
log - :

— & (43

I

— log

(7:26) E.n) =

Since Ey(z) = 0, F,(z%) is cqual to the varianee o,° of 2. ]."1'01'1’1'@3)
it follows that the variance of z is equal to (0, — 0,)%/%  Tlaged

—1In . log 1“18 A (\”5’\ i
gl —a o« o — fszf’\f‘)
(7:27) En) = - o = iy
O — ) X r}&J"
N
N\
N
’\{"‘\\v
AN\
\ 9,
,3::;“ )
S\
{N\
t"i’/\\
¢ .'\ 4
&
\&"
'\‘:,.}
AV
VN/
o\
Q)
AN
N



Chapter 8. TESTING THAT THE STANDARD DEVIATION OF
A NORMAIL DISTRIBUTION DOES NOT EXCEED A GIVEN
VALUE

8.1 Formulation of the Problem

Lot z be a normally distributed variate. In this section we shall ,
deal with the problem of testing the hypothesis that the standard
deviation ¢ of # does not exceed a given value ¢'. There are two ehshs
to be considered: the mean of & is known or unknown. First weshall
treat the case when the mean of & Js known. If the mean oy 1s un-
known, only a slight modification of the test procedm‘e'“ﬁifl bé neces-
sary, as will be seen later. e b

This problem, like the one treated in Section 7, duisés frequently in
quality control and acceptance inspection.  Suppefe that » is some
measurable quality characteristic of a manufadtitred product and that
# is normally distributed in the populatiobyef units produccd.  Sup-
pose, furthermore, that the quality of the"product is considered the
" better the smaller the standard devigbion o. Thus, there will be, in
general, a value o such that the pf@iduct is considered substandard if
¢ > o and the product is considered satisfactory (meets specifieation)
if ¢ <o, Bince o is unknggaly the problem is to devise a sampling
plan for testing the hy%{he?sis that the product is satisfactory, i.c.,

AN

that ¢ = ¢,

8.2 Tolerated %s:k\s for Making a Wrong Decision

If the quaﬁy"éf the product is exactly on the margin, ie,ife =0,
it will makeho difference whether the product iz classified as satis-
factory ~|51,;"as substandard. However, if o 13 consiclerably smaller than
& /thsJolassification of the produet as substandard will nsually be
re)g\;araed as an error of practical importance. Similarly, i ¢ is much
larger than ¢, the classifeation of the product as satisfactory will be
a serious error. Thus, it will be possible to specify two values oo and
o1 {oo < o and ay > o) such that the classifieation of the product as
substandard i3 considered an error of practical importance whenever
o = op, and the classification of the product as satisfactory is regarded
as an error of practical consequence whenever ¢ = oq; for values ¢ be-
tween op and a; we do not care particularly which action is taken.
125
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In aceordance with the considerations in Section 2.3.2, the risks thag
we are willing to tolerate may reasonably be stated as follows: The
probability of classifying the product as substandird should not exeeed
a small preassigned value o whenever ¢ < ag, and the probability of
classifying the product as satisfactory should not excoed & preassigned
value 8 whenever o 2 o).

8.3 The Sequential Probability Ratio Test Corresponding to the
Quantities o, 71, a, and B

A sampling plan satisfying the requirements regarding the tolérated
risks is given by the sequential probability ratio test of strength (v, @)
for testing the hypothesis that ¢ = oy against the ;thn;l;f'l}tt}ve that
T = 7. s W/

Let aq, 24, - - -, ete., denote the succossive ()lmer\;:xtﬁ’o"ps on r. The
probability density of the sample (X1, * v+, k) Is givion by

— 5 2 Al
(8:1) P = e o
@m)%6" N
where the value of the mesn ¢ is assimed to be known, Let Pim Ce-
note the expression we obtain if ~,b::i?s replaced by o; (2 =0, 1) in the
right-hand member of (8:1). _The sequential probability ratio test is
given as follows. The pro};a‘hfﬁty Tatio Pim/Pon 1t computed at each
stage of the cxperiment.M@ddit.ional observutions are taken as long as !

n

"\\ ' 1 —-132 (re—8®

2oy

£ ) — - a1
o - 1 —
(3:2) N P _ o . <1=F
itkT & Pom 1 - %Z 2 (za—8)2 &
O — e V=i
The \;iijéduct is classilied as satisfactory if
...\: J "
A 1 =5 X a0
—-g w=1
T 7L
(8 :3) 1 i g B ﬁ
1 - 2—:5; oz L@
-— ax=1
Ugm

! There is a slight approximation involved in the formulas given below, since
the constunts A and B are put equal to (1 — 8)/e and 3/(1 — @) respectively.
In this conneetion see Section 3.3.
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'The product is classified as substandard if

1 m
1 —55 2 Gt

_m e =1 1
[ -5
{8:4) % 2
1 —padant
— g a=1
Er()m

Taking logarithms, dividing by (1/2a0%) — {1/2¢,%) and simplifying,

the inequalities (8:2), (8:3), and (8:4) will become A
8 ) z ':“ .
2log —— -+ mlog LS n ‘.'\\";\'
o — o ag” < Z( 9)2 < ‘;”}
(R: Ta — %
(8:5) 1 1 y S
ag° o . ”\'}’J i
2 log T~ + mlog —
7\;\ & %o
~N 1
. ~’ a’ o’
m‘.‘:‘: 4wl o1’
{og - m log —
9 2‘<‘%::;g1"a o4
(8:6) ;(xa - 6)\\: N :
\\ J ;u_ - ;1-2_
and e .
.'“""’ . 71
N 2 log + mlog —;
§ - 2 - o ag
87 \”\,i E (e — ) Z I ]
'\ a=1 - _E
*3,\ 7’ o1
re&Qé&fvely.

\On the basis of the inequalities (8:5), (8 6), apd (8:7), the test pro-
cedure can be carried out as follows: For cach integral value m com-

pute the aceeptance number

tog 2
21 0B
ogl——a+m o
(818) Qm = 1 1 1 1

-2 2 N

0'02 0'12 0] 71
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and the rejection number

-8 0

2log — — log —

o4 an”

89 T = I : + m f
IR T

2] 71 o oy

These acceptance and rejection numbers do not depend  on the
outeomne of the observations and, tharefore, they ean be computed
before inspection stavts.  Inspection is continued as long us a, <

4

ki
E {(ta = 8% <7,. The first time that (e, — 02 dnc;m&ot- lie be-
¢\
== ] A4
tween a, and r,, inspection is terminated. If nt ‘1‘.}}0 final stuge

m A
e {
A -
E (xy — 0% = q,, the produet is  declared | ali<lactory, and if
a=1 A\ N
¥ b4

(z, — )% = v, the product s (leclai.l'eg wiubstundard.
9.\
=] 2%
A graphical presentation of the te&t‘})rocm‘lure ig shown in Pig. 16,

N\

Slxy—@i? o\

N\ Ly

Ao
Kinwe -‘ns‘ﬁd
ot

& 3 etaco™
Pro

o~ —_—m
’\\” e, 14

'L‘h}i‘numbcr m of observations is measured along the horizontal axis.
wnce both a,, and , are lnear functions of m, the points (m, @) Wil
lie on a straight line Ly and the points (m, 1,5 will lie on a straight

line Zi. These two lines are paralle]l and the eommon slope is given by

log ‘lz
2
(8:10) § = i

1 1

o ot
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The intercept of Ly is equal to

2 log ———
(8:11) ho = =
1 1
ol o
and the intercept of Ly iz given by
2 log -
. o N\
(8:12) hy = ] I N
g - ;13 { ( 2

\

The lincs Lg and L; ean be drawn before inspection startsg “Ais' inspoc-
. AR

tion goes on the points [m, Z(::;a — )] are plottedp:\The first. time
a=1 v

that the point [m, Z(z. — 97?] does not lic betwedn the lines Ly and

Ly, inspection is terminated. If the point [ Da. — 0] lies on Ly

or below, the hypothesis that the product, {g)satisfactory is accepted;

and if the point [m, Z(za — 6)°] lies on L or above, the product is

declared substandard. Ny

a3
<

8.4 The Operating Characteristic (OC) Function of the Test

For any value o, let L sl(dcnote the probability that the test will
terminate with the acteptance of the hypothesis that the produet s
satisfactory. The fumgtion L{g) is called the operating charneteristic
function of the tedt?;™

In Section 3.({3: general method i3 given for deriving an approxima-
tion formgj'{ér the OC funetion for any sequential probability ratio

test. Applying the result of that section, we obtain
§~:¢’ ﬁ
A (= L
e\ N
) o
(8\-13) L{o) =

(] _ ﬁ).ﬁ ( 8 )k
o 1l —«
where % is the Toot of the equation

1 X
— (8 1
] Frq?
1 O'Uh + e 271 (}_F (x—ﬁ)zdz - 1
(814) —— " h 1 (-8
’\/2?1'0' Ty —m 8_ e z
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[t ean be scen that the integral on the left side of {8:11) has o finite
value only if (/6,%) — (h/og®) + (1/2) > 0. In this tuse, as can he
verified, we have

+ef T2 , s
e g (T8 f P
(Sls)f . 2 gy = u
~wo \ Tap e’ /i _ + b
N ol g2
Hence equation (8:14) ¢an be written as
i _—
p o1y _ 1 QA
(8:16) a(gn) = /h’ 7 i .
\l b - 13 + T '.\..\'
[ oy O’z o\

Instead of solving (8:16) with respect to , we shall gsdl}ré. it with re-
spect to o, We obtain e \ I

(8:17) o= 7w
WX
A

With the use of cquations (8:13):'3,11d (8:17), the OC curve can be
plotted as follows. For any gixdm value of % we compute o and L{o)
from equations (8:13) and (83%). The pair [o, L{g)] oIntained in this
way gives us a point onghe OC curve. Computing [e, L{z}] for a
sufficiently large numbgn',\of values of I, we obtain enough points to
draw the OC eurve. &K\

For computa.t-igpz}} purposes, it may be convenient to put 2

(8:18) oF _t _, ] -2

: p _— = ——— = or T e —
AU 202 24 ( 1 1 )
.s'§w 002 0’12

Th(}r(&i'uations {8:13) and (R:17) can be written as
@ \¥/

\ ) (log I_;B) ('1__&_1)
é - -1

a2 op?
(8:19) Lie) = tog L8 — B Tow E ot
(e 2" (L_L) (e 155) (L_L)
e ot etS — g vet oy
e'_thl—- 1
- e—-fﬁl _ e—lkg

*A similar simplification was made by the Statistical Research Group. See
SRG 235, p. 6.31. The parameter { used there cotresponds ta —{ here,
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oyt — 3t
(bga_ﬁ'-) (i — i)
e gt [IE T 1 /egsl _ 1

2 "Ny

and

(8:20) o=

where s is the common slope and Ag and A, are the intercepts of the
lines Ly and L. Equations (8:19) and (8:20) may be more convenient
for the eomputation of the OC curve than the original equations (8:13)

and (8:17). ~
For ¢ = 0, 0y, V5, 01, +® the values of L(s) are given as followsa
O
(8:21) L)y =1 ;\"}\ )
L) =1 —a C"
\V
h A\S)
L(Vs) = —~ ‘
}1-1 - hg '\\‘;

L) =8 oo
Lix) = ,’.:’a )

These five points alrcady detcrmi@}bﬁghly the shape of the OC curve
und in many instances it wilk not be necessary to compute further
points. ;"‘z\
\\\./ '

8.5 The Average Ambynt of Inspection Required by the Test

According to t}fc;\}esults in Section 3.5, an approximation formuky
for the expecte\ﬂ';}&'lue F.(n) of the number n of observations required
by the samﬁﬁng plan is given by

A\

T,
N>

»\“ ) o=+ 11 — Lo log "
1 -« o
53 B - e
where
: 6_2_:?{1—3)2 1 1
8:23) z= 10g511——:;%ﬁg = loggf +§(;? - ;) (x — 6
Zg 4

7a
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and ¥,(z) denotes the expected value of z when ¢ is the standard devi.
ation of 2. We have

1/1 1
(8:24) B, (z) = - (—, — —-—) Fle — ) + lwr -

R At o1

171 1 oy
= — r)' — = + l()ﬂ‘ -
2\ o a

Hence, substituting the right-hand member of (8:21) forJ) in
(8:22) we obtain *

.f\“\'
N\
1—8] A5
I(J) ln" = —log - —— J + {n\!\——
®:25)  Tun) @ P/, M
25 Lalit} = ~
1 | 1 2 X \ aq
‘; _-‘_J - a” + fn:g -—
& NI o) ’x:\\, ¢l
L(O’) hg — ;!1) + }11‘ .\
B O'2 — & »:‘: "

v‘,

Toro = 4/s the expec ted § al‘t‘w of z is equal to 0 and the right-hand
member of {(8:25) takes the Torm 0/0. According to cquation {A:99)
in the Appendix, the ]m}"ftmﬂ value is given by

¢
:’j\ B 1—8
A — log —--log
(8:26) AN/ Eonn) 1 — o o
: RS, viln) = 2
o E (=)

i"\s.

Qm(e.\b} (2) = 0, E,(z") is equal to the variance of z when o =
\/& Tt follows cagily from (8:23} that this variance iz equal fo

2
\5:(—2 — —‘)') SE. Hence
ag

O’l-
i} 1—5
— log log -~-——
(8 9 ) B ( ) I Y (84 —!lnhl_
: T ﬂx_ ny = =
g 1( L1 )2 ‘ 257
_ —_— o — S-’
2 \g 2 0‘12

# The expression of E {n} in terms of the slope and intercepts of the decision
Tines is contained ulso in SRG 255, p. 6.24.
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8.6 Modification of the Test Procedure When the Population Mean
Is Not Known 4

If the mean 6 of £ 13 not known, the following two modifications of

the test procedure are to be made: (1) replace Z(xa — 8 by

=1

E (x, — %) where & = (z; ++ -+ am)/m; (2) the acceptance num-
a=1
ber a., is replaced by an_; and the rejection number r, is replaced
DY Fm_1. Thus, if the mean is unknown, the acceptance and rejeetion

numbers at the mth trial are equal to the acceptance and I‘E"_]LCUQII.

numbers corresponding to the (m — 1)th trial when the mean is kngiea')
The formula for the OC curve remaing unchanged and the L\})& ted

value of the number of observations required by the test is larger by 1

when the mean is unknown than when the mean is knoyuy ’

4 The result contained in this seetion was found by C. Stein ahd’M. A. Girshick,
independently of each olher.  The proof is baged on a transf(\rx?qhon of the observa-
tions which reduces this case to the case when the meands\Ehown See Clirshick's
paper, “Contributien to the Theory of Bequential AnP.L “’ The Annals of Muthe-

N Y

matical Stetistics, June, 1946. N



Chapter 9. TESTING THAT THE MEAN OF A NORMAL DIS-
TRIBUTION WITH ENOWN VARIANCE IS EQUAL TO A
SPECIFIED VALUE

9.1 Formulation of the Problem ~

Let z be a quality characteristic of a product, such as weight, diam-
cter, or hurdness.  Suppose that & is normally distributed in thegpepu-
lation of all units produced and that the standard deviation @bt  is
known but the mean 8 of # is unknown. Suppose, furthetmore, that
a particular valuc of 0, say 8, is considered the most dés‘ira.bie value
for the product. In general, the greater the absnlute"@bviation of the
true value 8 from the most desirable value 8, the Jods satistactory the
product. Since the manulacturer would like ’g@j&\hicve and maintain
the value 8 of 8 as closely as possible, he will\be intercsted in tfesting
the hypothesis that 8 = 8. 1 the evidéntée supplied by 2 sample
should Indicate that & = 6, he wilt tryjo’j]ﬁ}_)rove the preduction proe-
ess. Of course, if 8 = f; but iz ncardy, there is no particulsr noed to
improve the production, and acc-(;pi‘..;-iﬁt:e of the hypothesis that 8 = ;
would not be a serious orror, o Iowcever, there will be, in general, a
positive value 8 such that t-lile’\ztcceptanc(: of the hypothesis that ¢ = 4,
{ #—

is regarded 45 an error of}}acticsd importance whencver 8,

I

\ o

The situation degerabed in the preceding paragraph will thus lead
to the followinggroblem: A sampling plan is to be devised for which
the probabilitysfhat the hypothesis that ¢ = g will be rejected (the
product wilkbé declared substandard) does not exceed a small pre-
assigned waluc « when § = 6, and the probability of accepting the
hypothiesis that ¢ = 6y (declaring the product satisfactory) does not

o

h
cxcéd a amall preassigned value g whenever

1%

]

9.2 A Sequential Sampling Plan Satisfying the Imposed Require-
ments :

It has been shown in Section 4.1.4 that an adequate sampling plan
for the problem described in Seetion 9.1 is given as follows, Compute
the ratio

134
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m
1
~ 53 2 (xp—g—ér)® — 5
=1 + e «

(e — Bp+- B} ¥
1

b=

plm €

Pom

BD | ek

(9:1) "
— % 2 (zo—0p?
e a=1
at cach stage of the experiment. Continue taking observations as long
a3
Prm

(4:2) B<— <4
Pom
N

Accept the hypothesis that the produet is satisiactory if A

N\

'S N
(9:2) Pim £B A
Pom " \ ”‘.

Reject the hypothesis that the produet is satisfactopyif

©:4) | Prroa
Poom ”‘:\
Te satisfy the requirements impusec,lxr:cgérdjng the probabilities of
making wrong decisions, for all pl;&gpﬁr?al purposes we may put- 4 =
(1 —f)/aand B=8/1—a). OV .
The expression for pua/Pow given in (9:1) can be simplified to
N\ ;
p]—m 1 '&}%mﬂg(ezztxa_gu)-l_ 8-_;2:[3“_80))

=’ -\g\

(9:5)

Substi.tub{p%,%his value of pim/Por in (9:2), (9 :3), and ($:4) and taking
logm;i‘@’iﬁs, we find that these inequalities becore

Q 52 5 , 82
(9:6) logB+m 5 < log cosh [— E(xa - 90)] <log /A 4+ m 5

ki3

O W=l
5. &
(9:7) log cosh [—E(xa — 6'0)] = log B+ m
T
and
52

§
(9:8) log eosh [—E(a:a - 6‘0)] = logd + m
F
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With the use of inequalities (9:6), (9:7), and (9:8), the test proce-
dure is carried out as follows. At each stage of the experiment we

a m
compute Z, = log cosh {ﬁ E(xa — 90)} . The first time that %,
13
a=1
does not lie between log B + [m(5%/2)] and log 4 + [m(62/2)] we ter-
minate the process. The hypothesis that @ = 6, is accepted if Z,, =
log B + [m(82/2)], and rejected if Z,, = log A -+ [m(82/2)).
The computation of Z,, at each stage of the experiment iz somewhat
d
— Z(zo — 0p)

vy

cumbersome.  However, if Is greater than 3, Z,\=

¢\

3 i, 8 2N\ . *
log cosh | —Z(zy — fp) | s very nearly equal to | - 3(z, —'c:ﬁo)w —
v o “~\

log 2! When this approximation to Z, is uscd, hl;xjﬁali’&-it_ts (9:6),
(9:7), and (9:8) simplify to o

T agd )
(9:9) E(logB +log 2) + m < | 2(za — a\.ﬂ} <

A\ od
W 5 flog A 4 log2) +m Py

N, 5

(9:10) | =G — ) | = - 4oe'B + log 2) + m%
and w{’“

e\J o o

(9:11) | 2@ — o) z - og A +1log2) +m

respectively. For:éﬂl’spractical purposes inequalitics {9:9), (9:10), and
(9:11) may bg\se(l instead of (9:6), (9:7), and (9:8) whenever

5
; | E(:l?a ’Ts%;)l = 3.

rl:}le“i:’{)ﬂmving is an alternative computational procedure which may
be\@uﬁd useful, Consider the equation in .

{9:12) log cosh | ul =

' This has exactly one positive solution if » 2= 0. The root of this equa-
tion is given by

{0:13) |l = ¢(®) = log (& + V 82”:)

t Bee also BRG 255, p. B.15.
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The funection ¢(#) can easily be tabulated. In terms of the function
&(2), inequalities (9:6), (9:7), and (9:8) can be written as

o ] 62 . el 52
(9:14) E¢ log B + mg) < | Z{za — b0 I < —aqb(logfl + mg)

T &
(9:15) | 2 (20 — o) | g—a(ﬁ(logB—i—m?)
and
T 52
(916) ] E(xa — Bg) ] = gé (logA + ??EE) N

;O\
When inequalities (9:14), (9:15), and {9:16) arc used, t-he~§1>€s"17’ean
be carried out as follows. For each integral value m we contpute the
acceptance number \ 3

{9:17) a"‘=5¢ log;JB‘—[—mE O
and the rejection number :\

F ;} 2
(6:18) Ty =2 5 ¢ {log A m 5

&N

W
These acceptance and reject-iou}:n;fhbers can be camputed before ex-
perimentation starts. Additionsl observations are taken as long as
Ay < ] Z(x, — o) l < rm_:“{}f | Dize — o) l < a,, the hypothesis that
§ = 8, is aceepted mc{i{*ﬁ(:&x — &) | = 7, the hypothesis that § =
iz rejected. N

o Oud
AN
)
x:\w
&
w4
N\
N\
WY



PART III. THE PROBLEM OF MULTI-VALUED DECISIONS
AND ESTIMATION

Chapter 10. THE CHOICE OF A HYPOTHESIS FROM A SE{
OF MUTUALLY EXCLUSIVE HYPOTHESES (MULTI-VALUED
DECISION) O\
e A\

Ny

10.1 Formulation of the Problem A\

Part T has been devoted exclusively to the discussion’éPthe problem
of testing a statistical hypothesis, In such probleids)only one of two
possible decisions can be made: the hypothesis S@veither rejected or
accepted. Thus, we can say that testing a h rpothesis is o two-valued
decigion problem, since the decision cansgke only the two values:
acceptance and rejection. Tet H denote thdhegation of the hypothesis
H to be tested. Then testing the hypothesis H is the same as choosing
between the two competing h}rputh{;{sés’ﬁ and H.

It has been pointed out in Secfion 1.3.5 that testing a hypothesis H
arises frequently as a consequénce of the problem of deciding hetween
two alternative courses 0{ izccfb»ion, say action 1 and action 2. Supposc
that the preference forfene or the other action depends on the value
of an unknown paramdter ¢ of the distribution of & random variable z.
Lef o denote the sef’of all values of 8 for which action 1 is preferred to
action 2 (or at L(e@.s,t not less desirable than action 2). TIf a decision is
to be made_at\the basis of a finite number of observations on x, this
leads to thewproblem of testing the hypothesis H that the tre value 8
lies in @XNITf /7 is accepted, we decide for action 1, and if I7 is rejected
we deCidle for action 2. In applications it happens frequently that there
aréudore than two alternative courses of action, one of which is to be
chosen.  Suppose that there are & (k > 2) alternutive actions, say
action 1, action 2, - - -, action k, and that one of them is to be chosen
on the basis of some observations on the random variable z. Su ppose,
furthermore, that the relative degree of preference for these actions
depends on the value of a parameter 8 of the distribution of z. Then
it will be possible, in general, to subdivide the totality of all possible
values of § into £ mutually exclusive parts wy, we, - -+, wy such that
action j is preferable to all other actions ¢ »¢ j if, and only if, the true

138



CENERAL NATURE OF A BEQUENTIAL SAMPLING PLAN 130

value @ lies in w;. Let H; denote the hypothesis that 8 lies in oy {(j =
1, -+, k). Then the problem of deciding for a particular action re-
duces to the problem of choosing one of the hypotheses Hy, ++ -, Hy
It £, is accepted we decide to take action 4. Such a problem may be
callod a multi-valued decision problem, sinee the decision to be made
can take & values: We may aceept H,, or Hy, - -+, or Hp.

In this section we shall deal with the problem of choosing one out
of & rtually cxclusive and exhaustive hypotheses, [Ty, « -, Hy, on
the basis of some observations on the random variable & under con-
sideration.! "The problem of testing a hypothoesis is contained in this,
as a special case when & = 2.

The following simple example may scrve as an illugtration. Supfmsc
that z i3 & measurable quality characteristic of a product *gf'hi_c}i ig
normally distributed in the population of units pmduce@:f&’SUppose,
furthermore, that the quality of the product is regarded/Bhe better the
higher the mean value 8 of z. Assume that the follm-\}ﬁg three alter-
native actions are under consideration by the p}a-nufacturer: (1) to
sell the product at the regular market price, (2), todabel the produet as
second rate quality and sell it at a reducod e, (3) to withhold the
product from the market. - Let @ and b (a¥) be two values of 6 such
that the manufacturcr prefers action 3f # < a, he prefers action 2 if
o < 8 < b, and he prefers action Ioil8 2 b, Let H, denote the hy-
pothesis that 8 = a, /1y the hypéﬁﬁesis that @ < @ < b, and Hy the
hypothesis that ¢ = b. If ‘rhgwallim of # is unknown and if the manu-
facturer must decide whi h’\action should be taken on the basis of
some obgervations on '\ie is faced with the multi-valued decigion
problem of choosing one of the mutually exclusive hypotheses Hy, Ha,

&ndﬂg. U4,

102 The Geletal Nature of a Sequential Sampling Plan for Select-
ing‘a\\HYpsthesis from a Set of Mutually Exclusive Hypotheses

A se@iéntial sampling plan for choosing one of & mutually exclusive
au@exhaustive hypotheses fIy, -, H, may be described as follows.
A e iz given for making one of the following (k + 1) decisions at
each stage of the experiment (at the mth trial for cach integral value
of m): (1) to terminate experimentation with the acceptance of Hy;
(2) to terminate experimentation with the acceptance of Hy; -« -; (k)

I Thig problem in the non-sequential case, that is, when the total number of
ohservations to he made i3 determined in advance, has been treated in several
previous publications. See, for examplo, the author’s article %ty istieal Deeision
Tunctions Which Minimize the Muximum Risk,” The Annals of M athematics,

April, 1945,
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to terminate experimentation with the acceptance of y; (& + 1) fo
continue the experiment by making an additional obscrvation. Such
a procedure is earried out sequentially. On the basis of the first ob-
servation one of the aforementioned (& + 1) decisions is mace., If one
of the first & decisions is made, the process is terminated, Tf the Last
decision iz made, a second trial is performed. Again, on the basis of
the first two observations, one of the (8 + 1) decisions is made. If
the last decision is made, a third trial is performed, and so on. The
process 1s continued untii one of the first £ decisions is made. ~

In more precise mathematical terms, a sequential sumpling plan
may be described as follows. Tet R, denote the totality of all peksitle
samples of size m, ie., R, is the m-dimensional sample spale, Tror
each positive integral Value ol m, the m-dimensional sa,mpfe space is
split into (£ + 1) mutually exclusive parts, E,:, Ema, 'j-'.- Ry oand
By wt+1. If the first observation z; lies in By, wherew “3\}» the process
is torminated with the acceptance of H;. If 2y liet\n Rl pr1 & second
observation x, is made. Again, if (xy, 25) les m\é}mt Ro; with i = £,
the process iz terminated with the af(epta@c} of Hy Tf {1, 22) lies
in Ry & third trial is performed, and so©n” This process is stopped
at the first time when the sample (g3 &8, T} les in R, for some
value 7 = k. Thus, a sequential san‘hphng plan is completely defined
by the sets Ry, - -+, Rypepre Smcv these sets are mutnally exclisive
and add up to the whole sampléspace R, it is sufficient to define any
k of these sets, since they dé%‘emnne uniquely the remaining set.

For any m, the subdlv‘is\\en of the sample space R, into the (k + 1)
parts Bny, « - -, B,z £C8n be made in many ways, and a fundamental
problem is that o:[@propm choice of these sets. In order to set up
principles for thi%\chmce, in the next section we shall study the con-
sequences ofw particular choice.

10.3 Cem—:equences of the Choice of Any Particular Sequential Sam-
\ ‘,plmg Plan

After a particular choice of the scts Ry, -+, B, ;41 has been made,
i.e., & particular sequential sampling plan has been adopted, for any
¢ = & the probability that the process will terminate with the aceept-
ance of A; depends only on the distribution of the random variable
under consideration. Since it is assumed tha$ the distribution of x is
known except for the values of a finite number of parameters 61, - - -,
8, the probability that H; will be aceepted will be a function of these
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parameters, To simplify notation, we shall use the letter ¢ without
subseript to denote the set of all » parameters 8, -+, 6. Let L;(8)
dencte the probability that the adopted sequential sampling plan will
terminate with the acceptance of H; (i = 1, ---, k), We shall refer
to the set of functions Ly (), La(8), ---, Ly(6) as the operating charac-
teristics of the sampling plan. We shall consider only sampling plans
for which the probability is 1 that the process will eventually termi-
nate. Then we have

(10:1) Ly(8) +- 4 L) = 1 ~
and, therefore, one of the functions L;(#), « -+, Ly(f) is determifiad by
the other & — 1. ' e\

The operating characteristies represent the accomplighijgéht of the
sampling plun In giving protection against possible ’“{rbng’ decisicns,
For any paramcter point 8, the probability of aqce}}t?mg the correct
hypothesis, i.e., the hypothesis which is considtent with parameter
point 8, ean be obtained immediately from :t-&:operat-ing character-
islies. Sinee the hyvpotheses Hy, -, H’k;a‘i‘e"mutua]]y exclusive and
exhaustive, for any given parameter poitit ¥ one, and only onc, of the
hypotheses Hy, -+, Hp will be consjst’gnf with a given 8. I{ H; is the
hypothesis consistent with a given ;&; the probability of making a cor-
rect decision when this ¢ is t-ruejijéy equal to I;(#). The operating char-
acteristies of a sampling pléh, are considered the more favorable the
higher the probability fgq'tﬁaking eorrect decisions for the various pos-
sible parameter points@s N

The price we hateyto pay for the aceomplishment of the sampling
plan in giving ppc}téc“tion against wrong decisions is represenfed by the
number n of .éﬁsérvati(ms required by the sampling plan. Since n is
a raT.ldon}\\%;ﬁ-iéJble, we shall consider, as in testing a hypothesis, the
expected Vilue of n. After & particular sampling plan has been
adopt;ed;' the expected value of n will be a function of the parameter

fﬁl‘itﬁ only. As in testing hypotheses, we shall denote the expected
vilue of n, when 4 is truc, by Ej{n}, and we ghall refer to Ey(n) as the
average sample number (ASN) function of the gampling plan.

Tn conelusion we may say that the most important consequences of
any particular choice of & sampling plan arc given by the operating
characteristics and the ASN funetion of the adopted sampling plan.
The operating characteristics represent the accomplishments of the
sampling plan and the ASN function represents the price paid for these
accomplishments.
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10.4 Principles for the Selection of a Sequential Sampling Plan

10.4,1 Dependence of Importance of Possible Wrong Decisions on
the Parameter Point §

To set up principles for the selection of a scquential sampling plan
it will be necessary to investigate the dependence of the importance
of possible wrong decigions on the parameter point. Let o, denole the
set of parameter points 8 consistent with H, (& = 1, - -+, &), Le., His
precisely the statoment that the irue pavameter point ¢ is included in
w;. Il the true 2 is in o; but not far from «; for some § = 7, the acoefts
ance of H; will nol be regarded, in general, as a serious error. Alaew-
ever, if 4 is far from «; and I1; is accepted, the error commitbediAvill
nsually be of considerable practical consequence. >

As an lluslration, consider again the example given m*SoEtlon 10.1.
The decigion to withhold the product from the mm{(\L will be con-
gidered an error of little practical significance il @ i&doly slightly above
. 'The seriousness of this error will, however, ingheuse with increasing
value of 8. If # is substantially above ¢, the 88tision to withhold the
product will be regarded as an ervor of edhdiderable practical impor-
tance. Similarly, the decision to iry toudell the product at regular
market price will not be a serious 011"0&* if 818 just slightly below b,
but the importance of this error m,ll incregse with decreasing value
of 4. N\

It will frequently be possiblésto express the importa.n:;c, of the wvar-
lous possible wrong decisiohe by & functions wy (6), -- -, we(#), where
10;(8) is a non-negative T\}u-hon expressing the importance of the error
committed by acceptihg #; when 8 is true. In industrial problems,
w;(0) may be thought of us expressing the financial loss caused by
taking the acti;{n(cbrrespom‘]jng to the acceptance of H; when £ is true.
We shall, of €autse, put w;(0) = 0 for all points # in w;, since for such
points § thea cceptan( e of H; is a carreet decision. We shall refer to
the funatwm wi(f), «+ +, wi(f) as error weight functions, or more brielly
ag Wng}lt functions,

Re choiee of & sampling plan will be infuenced by the weight funec-
tions wy(8), - -, wi(6). The determination of these weight functions
cannot be regardoed as a statistical problem. They will be chosen on
the basis of praclical considerations in each particular problem.

10.4.2 The Risk Function Associated with a Given Sampling Plan

For any parameter point @ we shall mean by the risk 7(8) the ex-
pected value of the loss caused by possible wrong decisions when @ is
true. Bince the probability of accepting H; is equal to L;(6) and since
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the loss caused by this decision is given by w;(#), the expected value
of the loss is equal to

(102)  (8) = Ly (0w (8) + Lo@ue(8) + - -+ + LulBuws()

We shall refer to #(8) as the risk funetion of the sampling plan.?
We shuall judge the relative merits of a sampling plan by its risk
function r{#) and ASN function Eyp(n).

10.4.3 The Risk Function and the ASN Function as a Basis for the
Selection of a Sequential Sampling Plan )

A sequential sampling plan is the better the smaller the risk r{(6) anﬁ
the smaller the expected value Es(n) of the number of obsery@ations.
These two desiderats of 2 sampling plan are somewhat in conflict, smee
the smaller we make r{8), the larger, in general, will be th.ég»‘nilmber of
observations required by the plan. To achieve a reqst;ﬁable compro-
mise botween these two conflicting desiderata, apesmay proceed as
follows. First we impose the condition that the ¥sk r(6) shall not
exceed a certain prescribed positive value rp, /iy

(10:3) r(8) < T NN

for all parameter points 8. We then)@;o’nsider only sampling plans for
which (10:3) is fulfilled. From t-hje{'class of sampling plans we try to
select one for which Fy(n) is as 'amall as possible.

To impose first the conditign™(10:3) and then to try to minimize with
respect to the expected nufnpor of observations docs not scem to be
an wnreasonable prou@ﬁe‘, aince the risk function #(#) is perhaps of
primary imporfances?

The choiee of thesdpper limit ro of the risk is not a gtatistical prob-
lem. 1t will be’d@termined on the basis of practical considerations in
each particuldriease.

2 Anot-hg&)c.ﬁ'sa;iblc definitlion of the risk function could be given by including also
the expected value of the cost of ex porimeniation. If ¢ denotes the cost of taking
a single’ of.usewat-ion, ihe expected value of the cost of experimentation is equal to
@v})’ and the risk is given by

&
(10:2%) P = 3 Li@)wi(e) + CEE,(?‘I-)
i=1

If the cost of experimentation iz not proportional with the aumber of observations,
but iz given by the cost funciion c(n), then the term eEy(n) in {10:2%} is to be
replaced by Eyle(n)h . .

* Using the risk function +*{(), as given in (10:2*), & sampling plan for which the
maximum value of r*(8) with respect to 8 is minimized may be regarded ax an
optimum plan, If this definition of an optimum sampling plan is acecepted, Do
condition of the type (10:3) is imposed; we simply try to find & plan for which the
maximum of r*{#) with respect to ¢ takes the smallest possible value.
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10.4.4 The Use of Certain Simple Weight Functions

The construction of specifie weight funetions wy(8), + -, wi(f) in a
given problem may occasionally run into practical difficulties. Al-
though in industrial problems w;(¢) could be assumed to be equal to
the financial loss (or cstimated financial loss) caused hy the acceptance
of H; when @ is true, in purely scientific investigations it is rather diffi-
cult to give a reasonable measure of the loss caused by accepting a
wrong hypothesis.

Even if the difficulties in measuring the logs caused by possible wrong
deeisions are disregarded, we still face the practical difficulty that fha
weight functions wy(6), -- -, wx(f) in a given problem may he £0g* in-
volved to be manageable. Thus, there is a need for r4impli£']t}aﬁ(i(m

The choice of the sampling plan is usually not vory dependent on
the cxuzet shape of the weight funetions. Tt will, ﬂl(‘r(,f()r( be fre-
quently satisfactory to use some rough appromm&t&‘&ne, reproducing
only the main features of the weight unctions, \% very rough, but
for many applications satisfactory, approumaL(&ri can be obtained by
replacing w;{8) by @;(8) defined as followk \

(10:4) w0 =0 if wy() is loss than 01 equal to a certain value ¢;
=c it wd) > ¢ »

where ¢ 18 somo posilive GODsﬁéiﬂ, Thus, %;(8) can take only two

values, 0 and e. There is 0’]0&& of generality in putting ¢ = 1, since

this can be achieved b imu]tlpllcatlon by a proportionality factor

which has no effect unsbge selection of the sampling plan.

1In what follows 1n ,,thls:, and the following section, we shall consider
only the weight funietions @;(¢). We shall call the set of all parameter
points @ for wh,'\t&h w;(8) = 0 and @,(6) = 1 for j # 7 the zonc of pref-
erence for\q,(‘(,pt&n(e of II;. 'The set of points & for which @) =
w;(8) = &and (@) = 1 for k = ¢, 7 will be called the zone of indiffer-
ence Q&tfveen H; and H;. Similarly, the set of points 8 for which
ux'(ﬂ) = () = @,(8) = 0 and @;(0) = 1 for I == 7, 7, m will be called

h&/zone of mtlli‘terence among the hypotheses Hy, Hj, and Hy,, and
20 OIL.

If we deal with the problem of testing a hypothesis H, then k& = 2,
H; = H, and H; is equal to the negation H of H. The zonc of pref-
erence for acceptance of H, the zone of preference for acceptance of H,
and the zone of indiffevence between H and IT defined here corregpond
to the zone of preference for aceeptance, zone of preference for rejoe-
tion, and zone of indifference discussed in Section 2.3.1.

To illustrate the meaning of the various zones defined here, we con
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sider again the example discussed in Section 10.1, In this example I7;
ig the hypothesis that 8 = a, Hy is the hypothesis that ¢ < # < b, and
IT; is the bypothesis that 8 = . The functions @,(8), @:(8), and @©s(6)
may reasonably be defined ag follows:

i =0 forf <o+ A

=1 foréd = ¢ + A where A is a coertain positive quantity
() =0 ifa — A <8 <b4 Aand = 1 clsewhere
@Wa(f) =0 ifg =0 — Aand = | elsewhere N\

Then the zonc of preference for acceptance of Hy is the set of Wilucs
of & for which ¢ = ¢ — A. The zone of preference for acetptatice of
H, is given by the incquality a + A 28 <b — A, and ’r?he zone of
prefercnce for acceptance of T3 by 8 = b+ A, Ther rone of indiffer-
ence between FIy and Hy is given by the mequfxllfy?x‘ A8 <a4
A, the zone of indiflerence between Hy and IT; 3 cmpty, and the zone
of indifference between 7y and Hj is given b — A £ 6 < b+ A
Finally, the zone of indifference among 1)’\}%, and H5 is empty.

When the weight functions @,(8), - - @48} are used, the risk fune-
tion r(¢) defined in (10:2) takes a_ partmul arly simple form. Since
;(8) can take only the values 0 ahd“1 we shall have

(10:5) JG > ZL;— 0

where the summamo\is‘tn be taken for all values of j for which
W) = 1.

We shall say thath w rong decision is made if, and only if, a hypoth-
esis f1; is acceptéd for which #,{6) = 1. Then the risk r(#) given in
(1(:5) is sm,{fgbr equal to the probability that a wrong decision will be
made. \\

The: prmupl( for the selection of o sequential sampling plan, as
stat&d in Section 10.4.3, can now be formulated as follows. We con~
su},er only sequential sampling plans for which the probability of mak-

\g s wrong decision does not exceed a certain pre agsigned value 7.
From the class of such sequential sampling plans we try to select one
for which the expected value of the number of obscrvations required
by the plan is as small as possible.

10.5 Discussion of a Special Class of Sequential Sampling Plans

The problem of finding a chuentlal sampling plan which may be
regarded as an optimum plan in the sense of the prov ious section is
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not yet solved. However, as will be shown in this section, a wide class
of sequential sampling plans can be constructed for which the condi-
tion that the probability of making a wrong deeision should not exceed
a preassigned value rq Is fulfilled,

To construct such a clags of sampling plans we shall make use of
the following lemma.

Lemma. Let i, x3, - -+, efe., be a sequence of variates, lel pi(xy, - -+,
Tw) (M =1,2, ) denote the joint probalility densily function of

sy T under the hypothesis Hy, and et pun(xy, -+, 20) be the den-
sity function under the hypothesis Ho*  Lel, furthermore, A be o don-
stant greater than one.  Then, under the hypothesis Hy, the p?‘f}?g\b-ihity

7'\

that
(10:6) Pin(z1y -+ Tn) < A \ .

pﬂm(xls T xm)

"
S

£ &
will hold for all values of m <5 greater than or equal tom}\-— {(1/A).

The validity of this lemma can casily be showh\With the help of the
inequalities given in Section 3.2 by lotting thé&’eonstant I in thosc in-
equalitics approaech 0. $ \

‘With the help of this lemma we can conatmwt a sequential sampling
plan satisfying the condition that th&Pplobability of making a wrong
decision does not exceed a proge pibed value ro as follows, Let
D21, * 7, Ty 8) be ciual to f(a:,,'ﬁ)f(ag, 8) «+ flan, 8) where f(z, 6) is
the probability distributionff.z when 8 is true. For any parameter
point 8 let p,*(zy, - . %,)9) he an arbitrary but given prebability
distribution of the vahites ), as, -+, ©,,.5° Then according to our
lemma the probability that
tomy 07 Pt

\M pm('ﬂly oty L, 9)

<4

wil] ho]d ~f§all m is greater than or equal to 1 — (1/4) when ¢ is true.
For ar@r sample point B, = (zq, - -+, 2,), lot wa(fy) denote the totality
of alhparameter points ¢ for which the inequality (10:7) is [ulfiled for

values m < n. Clearly, the probability that the truc parameter
pomt ¢ will be included in all sets w,(/,) (n = 1, 2, -+, ad inf.) is
greater than or equal to 1 — (1/4). The sequontml 9amplmg plan is
then defined as follows: We continue taking additional observations
as long as none of the weight functions @,(6), - - -, W(6) is identicully
7ero I w,{£y). Af the first time when o, (%) is such that at Jeast one

*If the distribuiion of 2y, 2, - -+, cle. is discrete, Di{Z1, -+, Zm) denotes the
probability of ohtaining a sample cqual to the obsorved.

51t is understond that the distribution of x1, * -, By determined from ihe dis-
tribution pue*(xy, «+ v, T, 6 (M > m) is identical with py, *(zy, <« -, Tm, &).
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of the weight functions @(8), - -+, @(f) is identically 0 in w,(E,), we
stop the process with the acceptance of the hypothesis corresponding
to the weight [unetion which is identically zero in w,{#,).* Obviously,
this scquential sampling plan will have the property that the prob-
ability of making a wrong decision does not exceed 1/4. If we let
A equal 1/7, then the probability of making 2 wrong decision will not
exceed ry, as required.

This method leads to a wide class ¢ of sequential sampling
plans with the required property, sinee the distribution function
P (X1, 1, Tmy §) in the numerator of (10:7) can be chosen entirely\
arbitrarily, It is doubtful whether this class C of sampling planscon-
tains an optimum plan in the sense of the definition given in 104,
If we are willing to restrict ourselves to sampling plans in claés C, we
still have the problem of so choosing p.,*(x1, « + +, T, #) asdo'make the
expected number of observations required by the plan g@5/#mall #s pos-
sible. This problem, too, has not yet been solved. “Fhére may be some
waste involved in letling A = 1/7p, since this may ¥éstilt in & maximum
probability of making a wrong decision that i$onsiderably less than
the tolerated value 7. A further developmeni;\of the theory may show
that 4 can be put equal to some valuc saller than 1/ry which would
lead to a saving in the number of ()bggr%a-ticalls.

Although the present stage of the theory is very incomplete, sampling
plans based on the inequality (108 may still be used with good advan-
tage in some problems. Evenif we cannot yet find the best distribu-
tion pa*(z1, <+ -, T, 0) tO {bg\used in the numerator of (10:7), we still
may be able to make &redsonably good choice of p,*(z1, - -+, %, 0)
and thereby obfaln a’sequential plan which requires, on the average,
a substantially smdller number of observations than the best possible
11011-sequentiul'f{impling plan based on a predetermined number of
obser vatior%"\.‘ ‘ i i

Regardifig possible choices of pn*(@1, - -+, 2, #) which may give
reasonaliy good results, the following remarks may be made. A good
regalfThay be obtained in some problems by Jetting pu*{(e1, -« 5 Tm, )
eq\zﬂ\‘ a properly chosen weighted average of pmlz1, * ) Tm, §) Where
¢ is 8 variable parameter point. In other words, we let”

(10:8) P (@1, - Ty #) =£P9(§')Pm($1: ey By §) AT

8 Tf there are several weight funetions which are identically 0 in wplfa), we may
choose arbitrarily onc from amopg the hypotheses corresponding to these weight
functions,

7 The averaging function p,(f) may also be disorete. |
continuous and diserete averaging functions could be given
intograls,

Formulas valid for both
by using Stiellje's



148 MULTI-VALUED DECISIONS

where the integration is taken over the whole parameter space 2 and
pe(¢) i3 & non-negative function of ¢ satisfying the condition

(10:9) sty ar = 1

The choice of the averaging function p,(¢) will depend on the weight
functions @, (8), - - -, W(8). If, for example, @;(6) = 0 for the puram-
eter point # under consideration, it seems reasonable to let p,({) = O
for all parameter points { for which @;{{) = 0, sincc we are not inter-
ested in diseriminating between parameter points for which the sauis,
deciston is correct. A

The following is another possible choice of pp*{(zy, -+ -, :cm,. &z hiich
may lead te good results in some problems:

(10 10) pm“(xlr " 3 Loy 6‘) (,‘5(231, G)f(:r: Gl)f(z& 02) f('{"mj m-—l)

where &, i the maximum likelihood estimate of g b‘anl,d on the first r
observations x, -, z, and ¢z, 8 Is some Qnmbly chosen prob-
ability dlstrlbutlon of .

To illustrate the sumpling procedure based on {10:7), we shall con-
sider the following simple example. LeQ w be normally distributed
with unknown mean 6 and unit variagq& Then

N

X m
BN K2 e
a=1

(101 1) pm(xlr Tty xﬂu"g) = - m®
:...> (27)2

Let \Q""

(10:12)  pr*(ey, - -2, 0)

N

¢ \" % pm(xlj Ly 6 -+ 5) + Pm(-’ﬁ, rrry Ty f— a)]
where § ig a\gwen positive quantity. Then
. — bgms®
(10 13)\ S Prt (@ s ey 6) — [¢ G B(re =) + o33 Ea=0]
\ \ "/ P (xlj P ) 9) 2

= ¢~ ¥ oush {62z, — 8]
The eguation

{10:14) coshu = (v >1)

w /’

has two roofs in w which are equal in absolute value, Let (v} be the
positive, and —¢(#) the negative root of (10:14). Then the roots of
the equation n #

(10:15) e™ Y aosh [5(x, — 0)] =



A SPECIAL CLASS OF SEQUENTIAL SAMPLING PLANS 144

are given by

ma?
g2 A
E’l (Em) = jm "i" f'(“—‘_"‘z
ma
(10:16) and it
L ) =a - Y
- mo

where T, iz the arithmetic mean of the obgervations #y, - - -, &m.
The get of all values of # for which the inequality

N

P21, 20y T,y 0) ¢\
- | P\

pm(xlj oty Ty E") L Y ™

S,
o

is satisfied is the open interval (02(F.), 6:(E.)). The gobw,(E,) is
defined asg the common part of the open intervals (92(13{}}91 (E1)), « -,
(0:{E,), 8,(E,)). Hence w,(E,) i3 equal to the open‘interval whose
lower endpoint is equal to the maximum of the\}falues 8:(FEy), + -,
62(E,}, and whose upper endpoint is equalpehe minimum of the
values & (), +++, & (F,).F Experimentation”is terminated the first
time the open interval w,(E,) is such thay one of the weight functions
y(8), +- -, W(6) 18 identically zem'jxi’@;b(En).

As another illustration, consider ja‘géin the example given in Section
10.1, and for simplicity assumesthat the standard deviation of z is
equal to 1. Although the praper choice of p,*(x1, <+, Zm, 8) {or this
example hag not been thdrGighly investigated, the following cheice of
Du*(21, * ++, %m, §) is perhaps not unreasonable. A parameter point 6
in the zone of prefercfitefor acceptance of Hi,ie,avalucd £ a — Af
should be diS(:rmﬁJ{'ated against all other parameter values ¢ for which
acceptance of Hy38 a wrong decision. The smallest value { for which
acceptance g . is a wrong decision, ie., the smallest ¢ for which
W) = 1:,:13 f=a+4 A Thus, we put

AN

(109'\;.7\)} N P (21, * 0 *, Ty ) = 'pm(xl: Ceny Ty @+ A)
foralld £a — A

If ¢ is in the zone of indifference between Hy and Hy, le,ifa — A <
§ < a -+ A, we want to diseriminate 9 against values ¢ for which ac-

$ Tf it, huppens that the upper endpoint determined in this way is less than the

Iower endpoint, the seb w,(Hn} is emply.
S Tor & definition of the various zones and weight funciions @ (8), €:(0), and

B3(8) Tor this example see Section 10.4.4.
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coptance of Hy, as well as of Hy, is a wrong decision. The smallest
value of this kind is ¢ = 6 + A. Thus, we let

(10:18)  pu*(zy, - - "y Ty 0) = Py, - 'y Ty b = A)
fa—-A<t<at A

If 8 is in the zone of prefcrence for accoptance of H, ie., if ¢ + A
£ 0 <b— A we want to discriminate it against values ¢ for which
acceptance of H; is wrong, The greatest value ¢ of this kind to the
left of a + Ais { = @ — A, and the smallest ¢ of this kind to the right

of b — Alis § = b4 A It seems, therefore, reasonable to lot . A\
{\

(10:19) pn* = 3lpular, -+, 5y @ — &) + pes, -+, 2w, DD B)]
if a4+ AKd<b— A

. N

If ¢ is in the zone of indiference betwoen JF, 25"9:}&1 Hj, ie., if
b—A=<8<b+ A we want to discriminate Qagainst- values { for
which the acceptance of Ho, as well as of H 3,\~i§3§\w‘r0ng. Thus, we let
(1020) pm*(xls Tty By 6) = pm(xlr "t 'r:x;nf}xa - A)

N ifb—AZ0<ChF+ A
Finaily, if 9 i3 in the zone of pl;efi;iénce for aeecptance of Hy, le., If
8z b+ A we want to discrj.}ninalte f# against values ¢ for which the
acecptance of I3 is wron ~oLhe least upper bound of values of { of
this kind is § = b — A. N\ hiis, we shall let

(1021) pm*(xl: ' 'fsixd‘;&s 8) = Pm(ﬁfl; oy Ty b — A)
NS forg = b+ A

A
It shou]w;&"remembcred that there is no systemutic theory yet
available {ox'the proper choice of p,*(z;, - - *y &my 8).  The choice of
Pun*(%1, 8% &,r, 6) In the above example has been mado only on intui-
tivegrg\ands. It may well be that another choice of p,*(zy, - -, T, 6)
existg which leads to much better results. It should also be remarked
that it is doubtful whether an optimum sampling plan, as deflined in the
preceding section, is a member of the class of sampling plans based on
the inequality (10:7). Further mvestigations are needed to clarify
these questions.
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i1.1 Principles of the Current Theory of Estimation by Intervals or
Sets :

In this section we shall give a brief outline of the basic ideas o
estimation by intervals or sets as developed by J. Neyman.! ij\mider
first the case in which the distribution of the random variable<auinder
consideration is known cxeept for the value of a single pardmeter 6.
The problem treated in the currcnt theory is that of ehtimating the
value of 8 on the basis of a fixed number of obsewatioﬁé,'say N obser-
vations @y, - -+, Ty o0 2. \/

Let B denote the sample (21, -+ -, 2x) and Ieb 24E) and 6(E) be two
single-valued functions of the sample B suf{’i t

(11:1) BB) < 9F)  for all possible samples B

Tet 8(E) denote the interval extending from g(E) to 8(F). We shall
refer to §(%) also as an interval ijrijcfion, gince it agsociates an interval
with each sample. Since the intérval 5(F) is a function of the sample,
its location and length will, @hgencral, be random variables and, there-
fore, probability state its can be made as to whether §(E) includes
the true parameter galie 8 or not. For any value 8 we shall express
the relation that 68 contains by the symbol §(E}CH. TFor any rela-
tion R, the svmbol P(R | 6) will denote the probability that 2 holds
when ¢ is tl;e\thé paramcter value.

Accordidgo Neyman, an interval function 8(Z) is said to be a con-
fidence, i;}terval of g if

P PlaEYC0 | 6] = ¥

identically in # where ¥ is a {ixed value independent of 8. The relation
(11:2) simply says this: The prebability that 3(E) will include the true
" parameter value is always equal to v no matter what the true value of
the parameter happens to be. The fixed value v i# called the confidence
coefficicnt agsociated with the confidence mterval 8(F).

1]. Neyman, “Outline of a Theory of Statistical Estimation Based on the Classi
cal Theory of Probability,” Philosophical Transactions of the Royal Society of Lon-

don, Berles A, Vol. 236 (1937), pp- 333-380.
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Buppose, now, that the distribution of x involves several unknown
parameters, say 8, -+, fr. Any sot of possible values 8, -- -, 8, can
be represented by & point 8, called a parameter point, in the r-dimen-
sional Cartesian space (parameter space), If woe want to estimate the
parameters 8, « - +, 8, jointly, Le., if we want to cstimate the parameter
point 8, the estimating set will be some subset of the r-dimensional
parameter space. Whereas in the casc of a single unknown paramecter,
estimating sets other than intervals have little practical value, this is
not so when several unknown parameters are to be estimated jointly.
Estimating sets other than intervals in the r-dimensional space;\Sath
ag the interior of a sphore, or ellipse, or more general lvgwﬁ& will
have to be considered. Thus, we shall have to consider a set functlon
w(F) which associales with each sample point £ a certair sithset, o ()
of the parameter spacc without making the restriction that w(EY iz an

r-dimensional interval, .\\ ¢

A set function w(E) is said to be a confidence xogion of the param-
eter point § = (B4, -+, 0,) if \\
(11:3) Plu(E)C8 | 6] &0

identically in 8 where 4 is a fixed valie independent of 8. The value
v 18 ealled the confidenco cuefﬁme»nt of the confidence region w(F).

If only one of the parameters 91, + -1, 0y is to be estimated, estimating
sets other than one- dlmmmon‘ﬂ mtorvals will not be of much practical
interest, as in the case of. asmglb unknown parameter. Suppose, for
example, that only i gto be estimated. According to Neyman, an
interval function 6( \ib said to be & confidence interval of # with
confidence ceeﬁim(;nt v if

(11:4) ,\{.\" P3(E)COy | 81, 8, -~ -, 8] = v

identica@m 8y, Ba, -+, O

Uauéﬁ'y there will be infinitely many confidence infervals 3(E) or
cnnﬁ ence regions w(f) with a given confidence cocfficient v and a
fimtamental problem is to find & proper confidence inferval or con-
fidenco region which has some optimum properties. It is clear that a
confidence interval or confidence region with a given confidence coel-
ficlent v will be regarded the better the shorter the interval or the
smaller the region. The notion “short” or “small” is to be made pre-
cise, since the length of & confidence interval and the size of a confi-
dence region are random variables depending on the outcome of the
sample. This has been done in the theory developed by Neyman who
introduced varicus notions of optimum confidence intervals and con-



SEQUENTIAL ESTIMATION BY INTERVALS OR SETS 153

fidence regions. The mathematical consequences of these definitions
have been investigated and optimum confidence inlervals and regions
have been derived in many important cases. It is not intended to go
into further details here and the reader is referred to the original publi-
cautions of Neyman on this subject.

112 TFormulation of the Problem of Sequential Estimation by Inter-
vals or Sets

Tn estimation procedures bascd on a fixed number of ohservations,
we cannot control, in general, the length of the confidence interval
obtained, since this depends on the outcome of the sample. It may,
thercofore, sometimes happen that the confidenee interval obtaiudd is
<0 long that it has little or no practical value. The possibilify)of such
an event is u drawback inhercat in estimation procedurg&based on a
predetermined number of observations. AN

Tor example, the length of the best confidence ilmﬂh‘\?a.l, hased on a
fixed number of ohservations, for the mean of owormal population
with unknown standard deviation is proporyiqn\:ﬂ to the sample esti-
mate s of the population standard deviation'e.’ The sample standard
deviation s may take any valuc and is ].ikelyxto be large if ¢ is large.

To devise estimation procedures whiich lead to confdence intervals
not only with a prescribed confidenge’ cocfficient but also with a pre-
scribed length, or with a lengﬁh:'ﬁ(it exceeding s prescribed value, or
which satisfies some other sjlﬂilé.i* condition, it is, in gencral, nccessary
to ubandon the a.pproa.ch{bgi:sed on & {ixed number of observations, and
cstimation procedures gt séquential nature have to be censtructed.?

The general nature of a sequential procedure of estimation by sets
may be described(@s Tollows. For any positive integer m we consider
u sot S, of spmples of size m. These sets must satisfy the following
condition ;T{‘the gample E,, 18 an alement of Sy and if B (m' > )
ig an elgeme\it of S, then I, must not be equal to the sample consist-
ing oftthe first m observations in En. With any element E,, of 8.
m )1, 2, -+, ad inf.), we associate a subset w(By) of the parameter
%pa%-cﬁ The sequential process of estimation is then carried out as
follows. We continuc to rake observations on x until we reach & value
n such that B, is an element of 8. At this stage, we stop the process

T A very interesting sequential procedure has heen devised by C. Stein, “A Two
Sample Test for a Linear Hypothesis whose Power Is Independent of the Vari-
ance,” The Annals of Mathematical Statistics, Vol XVI, Bept., 1945, which leads
to confidence intervals of fixed length in an important class of problems, including

the example mentioned before. )
31 we are concerned with interval catimation, w(Bns) will always be anin terval
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and state that «(E,) contains the frue paramcter point, i.c., w(E,) is
the confidence set resulting from the sequential estimation proeodure,

Thus, a sequential estimation procedure is determined by the sample
sets Sy, Sp, - -+, ete., and the set function w(E) defined for all samples
Ein 8§, S, + ¢, ete. The fundamental problem in sequential estima-
tion is that of a proper choice of Sy, 8y, « -, ete., and of w(E), First
we impose the following two conditions:

Condition I. The confidence set w(F,) resulting from the sequential
estimation procedure should satisfy certain stated requh-cnmnts,{e-
garding its geometrie shape.

Condition II. 'The confidence sct w(#,) resulting from the(Eaquen-
tial estimation procedure should satisfy the inequality * O

Plo(E)C0| 6] = ~ K \

(&
for all parameter points 8. {The quantity v is & ﬁ’x}d value which is
frequently chosen as high as .95, or more.)

Y
v/

The requirements to be imposed on the gé;)'metric shape of the con-
fdoence set w(E,) do not constitute a stgbisidceal problem, and they will
be decided on the basis of practical conmdm ations in each particular
problem. Tor example, if there Iqug’ll}' one unknown parameter # (the
parameter space is one-dimensighal}, we may want to require that
«{F) be an interval whosoe leﬁgtﬁ should not exceed some fixed pre-
scribed value 4, or some gl*q)n funetion of the midpoint of the interval.
The latter case may be Qf interest, for cxample, in estimating the mean
of a binomial distrigutien. If there are several unknown parameters,
say v, - -+, 8, and,wé want to estimate them jointly, we may requirc
that thc Euchclcm volume, or the diameter ® of the confidence sct
w(By) does ndtexeced some fixed prescribed value. If we merely want
to estlmabe\one of the unknown parameters, say 6;, we may impose
the reqﬂi’r\mont that w(f,) be an interval with length not excecding
som(,prescnbvd fixed value, or the weaker requirement that w(&,) be

‘Sbset of the r-dimensional parameter space whose projection on the
#1-4xis has a dismeter not exceeding somo preassigned value,

Usually therc will exist infinitely many scquenfial estimation pro-
cedures which satisfy Conditions 1 and II. The ecriterion for sclecting
one from among them will be based on the expected number of obser-

4 Thig is weaker than the requirement by Neyman that the equality 51gn should
hold.

5 The diameter of a set js the largest possible distance between two points of
the set.
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vations required by the estimafion procedure. The sequential esti-
mation procedure may be regarded the better the smaller the expected
number of observations required by the procedure. Thus, we shall try
to select a scquential estimation procedure from the class of procedures
satisfying Conditions I and IT for which the expected number of obser-
valions to be made is as small as possible.

The problem of finding an optimum estimation procedure is un-
solved. However, a special elass of estimation procedures safisfying
Conditions T and IT will be discussed briefly in the next section. It is
doubtful whether this class of procedures contains an optimum solus
tion in the sense defined before. .

(\A

11.3 A Special Class of Sequential Estimation Procedures ()

The special class of sampling plans based on the ineqﬁﬁli‘ty (10:7),
and discussed in Section 10.5, can be used o obtaig'\ésﬁimation pro-
cedures satisfying Conditions I and 11, With each sarnple point B, =
(X, ++, ta) (n=1,2, ---, ad in[) we agsociald the set w(k,) con-
sisting of all parameter points & for whic .(1b;7) ig fulfilled for all
valwesm < n. Hweputd = 1/(L — vithen w(E,) will satisfy Con-
dition TT for each n. The cstimation .pi"o(:edurc ig carried out as fol-
lows. We continue taking obscrvatiphs as long as w(£y) does not
satisfy the requirements in (:(}I{djﬁfﬁl 1. We stop the process at the
smallest n for which o(F,) satigfies Condition I and then state that
the true parameter point 8§ Sheluded in w(#,). This rule of stopping
insures sutomatically thd Tulfillment of Condition L

If p* (g, =) Tms 9)\% chosen so that the probability is 1 that the
diameter of w(E.m),,wi:ll converge to 0 as m — oo, and if Condition 1 is
such that any setf sufficiently small diameter satisfies it, the prob-
ability is 1 ng\la'?t ‘the estimation process will be terminated at a finite
stape,

It is dSubtiful whether the speeial class of procedures considered here
con‘ga.i;ﬁ"an optimum procedure in the sense of the preceding section.
BYenif we are willing to restriet ourselves fo procedures hased on
(18%7), therc is no theory yet developed for the preper choiee of
Po*(®1, + vy my 6).  Our aim is, of course, to choase pr*(@1, ** *y Tm, 0)
50 that the expected number of observations required by the pro-
cedure should be as small as possible.  An optimum choice of
P (X1, -+, Ty §) Will depend also on the nature of Condition I
For example, if a certain choice of P(@1, + 1 Tm, 6) I8 optimal when
Condition I requires that the diameter of w(E,) does not exceed a pre-
assigned value, this choice will probahly not be optimal when Condition
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I requires that the diameter of the projection of w(&,) on one of the
parameter axes does not exceed a preassigned value, and vice versa.

There may be some waste involved in putting 4 = 1/(1 — v), since
this may imply the validity of Condition IT for 2 value v substantially
larger than the intended 4, A further development of the theory may
show that 4 ean be put equal to some value smaller than 1/(1 — 4)
which would lead to a saving in the number of observations.

7
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APPENDIX

Al PROOF THAT THE PROBABILITY IS 1 THAT THE SEQUENTIAL
PROBABILITY RATIO TEST WILL EVENTUALLY TERMINATE

The sequential probability ratio test terminates at the nth trial
where » iz the smallest integer for which cither N

z1+"'+3n§10g‘4 r fi\\\ﬁ)
4 x-’
or [z; = logz—l}

7N i @
At = log B ’ f(x v

L&
Tet ¢ = |log B| 4+ |log4 [ We shall subdigidls " the infinite_sc-
quence 21, 2s, %3, * + -, ad inf., inte segments of length r where r is some
positive migger. Thus, the first segment 8 ij}\bbnsist of the elements
z;‘ 77, 2, the sccond scgment S will contafm ‘the elements Brgely "
s 8Te, In gencral, the kth seghient Sp)will consist of the elements
Zh—Uyr41y " s 2 Lich_{s denote thestm of the elements in the kth
sg_glnent. Tt can be scen that if 11_1’ g_%:iznﬁnite sequence 2y, 2z, - -, ad inf.,
is wich that the sequential proceisnever terminates, then we must have

(A1) len] < e lMork =1,2 -+, ad inf.
)
Inequality (A:1) can alge be written
(A:2) (\j‘;‘,}ﬂ <  fork=1 -, adnl
Thus, in ordepyt6 show that the probability is 1 that the scquential
I eVentually terminate, it iz sufficient to prove that the
probablity is 0 that (A:2) holds for all integral values k. For_any
gmipbsitivc integer ¢ denote by I the_probability that ¢ < ¢
ihde 21, Zg, v, Are independently distributed, each having the same
(i 't-‘ribution, the distribution of {; must be the same [or all values 4.
Hence, also P; is indcpendent of ¢ and we shall denote 1f by P, Since
¢ :};, -, etc., are independently distributed, the probability of the
joint event that (A:2) holds for £ = 1,2, -, fis cqual to P?. Hence,
in order to show that the probability i 0 that {A:2) holds for all valucs
%, it is sufficient to show that P < 1. Clearly, if the expected value
of £#is > ¢, then P must be < 1. Since the variance of z; is assumed
to be positive, the expected value of ¢/ can be made arbitrarily. large
by choosing 7, i.e., the number of elements in a segment, sufficiently
157
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large. Thus, P < 1, and we have proved the proposition: The prob-
ability is 1 that the sequenital probability ratio test procedure will even-
tually lerminate.

A.2 TPPER AND LOWER LIMITS FOR THE OC FUNCTION OF A SEQUEN-
TIAL TEST
A21 A Lemma

In what follows we shall denote the expected value of any random
variable 2 by Efz). TFor any relation B we shall use the symbol 268)
to denote the probability that B holds. If the expected value ¥(z)
or the probability P{R) has been detormined under the asiéﬁﬂﬁntion
that 8 is the true value of the parameter involved in ‘rhe distribution
of the random variable under eonsideration, we shall ocmsmnall\ put
this in evidence by using the symbols By(z) and Pg(B), respeelively.!

In deriving lower and upper limits for the OC fudtion of a sequen-
tial test, we shall make use of the following ]E\Q'lma

Lemma A.1. Let 2 be a random vamabl«" \s@ch that the follouing three
conditions are fulfilled: AWV

Condition I. The expected valuce F(z) éxists and is not equal o 0.

Condition II. There exists a pm’%lwe & such that P{e* <1 — 86 >0
and P(e? > 14 8) > 0. 8

Condition III. For any maz balue h the expected value E(&**) = g(h)
exists.

Then there exists on\@ul ondy one real value hy # 0 such that
O E{e"*) =
Proof: Fo:rx &r{;}?ﬁoaitive h we have
gﬁ)oxg“ gh) > P > 14 81 + &)
H[.gn(-ie,,},gsin(:e Ple*>14+8 >0,

ol Jim g0 -
Bimilarly, we see that for any negative b

g(h) > P(e® < 1 - 8)(1 — d)*
Hence, since Pe® <1 — 8} > 0, we have

(A:5) lim g(h) = + o

k= —w

'If there are several unknown parameters, say 8, ---, 6, then # denotes the
set (91! ooy 85



LIMITS FOR THE OC FUNCTION 159
Sinee g''(k) = E(z%¢*) ! it follows from Condition II that
(A:6) _ gy >0

for all real values of k.

The relations (A:4), (A:5), (A:6) imply that there exists exactly one
real value A* such that g{h) takes its minimum value for h = A*,
Since ¢'(0} = F(z) is unequal to O by Condition I, we see that A% # 0
and g(h*) < g(0) = L. It iz clear that the funetion g(k) is monotoni-
cally decreasing in the striet sense over the interval (— e, A*) and is
monotonically increaging in the striet sense over the interval (A%, 4- 94,
Qinee g(0) = 1 and g(h*®) < 1, there exists exaclly one real value
By = 0 such that g{hg) = 1. Hence lemma A1 is proved. .4, )

From the above (,onbldm ationg it follows that if A* > 0 thcn algo
ho > 0, and if A* < 0 then also by < 0. Furthermore, 1f it > 0 then
E(z) = ¢'(0) < 0, and if A* < 0 then E(z) = ¢'(0) Q> Hence, ko
and E(z) arc of opposite sign. y \

A2.2 A Fundamental Identity - \\

In this section we shall derive an 1dent1t§\whuh will play a funda-~
mental role.  Consider the sequential prohablhh ratic test for testing
the hypothesis A, that the probability “distribution of x ig given by
flz, #5) against the alternative hvpothoms H; that the probability dis-

)
tribution in question is given by fix, 81}, Let 2 =10 ;EL’ 81; and
b o

~\
f( Xy 1)
wher dpnotes the 7th observation on z. As defined
B s o) oo

in Bection 3.1, the, test procedure is given as follows., Continue taking
observations a,'s,ln.hg as

;= log

(A7) \\ logB <z +- -+ 2, <logd

where Afﬁd B (B < A) are constants determined before the experi-
meqts%tiﬁn starts, Accept Hy when

AR 2t 2 S log B
and reject Hp {(accept Hi) when
{A:9) 2t zlogd

2 From Condition IIL it follows that sl derivatives of g(h) exist, and they may
be obtained by difforentiation under the integral sign, i.c.,

&)

i = B{e™) (r=1% --,adinf)
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In what follows we shall denote by n the number of observations re-

" quired by the test. Clearly, n is a random varizble. Let D' be the
subsct of the complex plane such that K{e™) = ¢(#) exists and is finite
for any point £ in I¥. Consider the following identity:

(A110) B(PAHEn=mt = B(A) = [p(0]Y

where N denotes a positive integer and Z; = 2, +++ -+ 2. Lot Py
be the probability that = N. Tor any random variable v, lef, £ ()
denote the conditional expeeted value of « under the restriction that
n < N, and let Fy*(u} dencte the conditional expected value of u
under the restriction that n > N. Then identity (A:10) can(be writ-
ten as NS

(:1:11) PNEN(GZ»J'F(Z.\'—Zﬂ)f) _|_ (1\_ I)N)EN*(BZJ\-'E-) ~%f[‘:‘-["(:f)]’\r

-
Since in the subpopulation defined by any fised @vE N the exprossion
Zy — Zy, iz independent of Z,, we have \\

(A12) By - B9l )

Flom (A:11) and (A:12) we obtam the ld(,ntlty

(A13) PyEx{e™fe@l" ™ -+~(1 — Py Ex*(e™) = [o@1Y
Dividing both sides by [r.ﬁQ " we obtain

(A:14)  PwxEx e%(t)r“wr(l Px)

E *(97'\.f)

el

Let D be :tt]b"subset of the complex plane In which |'q.':(£-)| =
and let D’,EB%’;IZ‘L\).U‘, the common part of the subsets 1’ and D”. Since
lim (1 \Rx} = 0, and since | Ey* (559 I is & bounded funetion of N,

Ne=w  §

we hdve in D
sy

=1

e P
‘S‘“m a0 T =0
ATLGE
Jim PyEx (516017 = Bl (6] ) )

we obtain from (A:14) and (A:15) the fundamental identity
(A:16) B{e e ™ =1

for any point { in the set D,
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A.2.3 Derivation of Upper and Lower Limits for the OC Function

The OC function of the scquential test is defined by the funetion
L.(#), where L{f} denotes the probability that the sequential process
leads to the acceptance of Hy when ¢ is the true value of the pa-
rameter® It has been shown in Section A.l that the probability is
0 that the sequentizl process will never terminate, ie., the relation
P (n = ») = 0has been proved. Thus, the probability that the proe-
ess will terminate with the rejection of Hy (acceptance of H;) is given
by 1 — L(#). TUsing the fundamental idenfity derived in the pre-
ceding section we shall obtain upper and lower limits for L{6).

. o £, 0
It will be assumed that the distribution of z = log ———<\satisfies
a:ﬂ

the three conditions of lemma A.1 {or any value 0. Thgen‘fér any given
§ there exists exactly one real value h(8) # 0 such thafE e ®) = 1.
Substituting A(8) for ¢ in the fundamental identity YA :16], we obtain

(A:17) Eg(eZ20y = 1 ND

{N

since ¢[R{1)] = 1. o\
Let E;* be the conditional expected €alife of @ under the restric-
tion that Hy is nccepted, ie., thateZ ‘< log B, and let Ep** be the
conditional expected value of q.zj’k:‘;m’under the restriction that 7f; is

accepted, ie., that Z, = log 4\ Then we obtain, from (A:17),

(A:18) L) (L — L) = 1
28 )
Solving for L{#) we dbtaih
A 01{ L=
(A:19) ’.\".“ (&) = Epr* — Iy*

If both th@{ﬁﬁéolute value of Ey(z) and the variance of z are small,
as they.@iiﬂ’be when f(z, 81) is near flz, 8}, then Eg* and Eg** will
be nedrly equal to B*® and AR® respectively. Hence, in this case
& good approximation to L(6) is given by the expression

\/ _ FLONEE|

(4:20) L) = 4B o)

This iz the approximation formula (3:43) given in Section 3.4. It 18
casy to verify that h() = 1 if § = 6, and h() = —1 it 6 = 0. The

difference L(#) — L(8) approaches 0 if both the mean and the variznce
of z eonverge to 0.

& For simplicity the ease of a single unknown parameter ¢ is discussed, but ihe
restults can obviously be cxtended o any number of parameters.
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To judge the goodness of the approximation given by L(9), it is
desirable to derive lower and upper limits for L{#)., Such limits can
be obtained by deriving lower and upper limits for Es* and Eg**.
First we consider the case when 2(8) > 0. To obtain a lower limit for
Ey* consider a real variable ¢ which is restricted to values > 1. For
any random variable » and any relation R we shall denote by E(u | R)
the conditional expected value of % under the restriction that & holds.
Let Py(¢) denote the probabilily that ¢"®Z+1 < ¢B*® Then we
have

N

w {7 I n
@an Bt = | (v oo s Yame (O

1L 'y 'S
Hence, a lower bound of Eg* is given by ~‘

7 {:
R
(A:22) B | gLb. (8 | 02 | 207 < 3
¢ AN

where the symbol glb. stands for greatest lower bound with re-
Iy O

spect to {. Sinee B*® is an upper bound of Fy*, we obtain the limits

| 3
XY

(A:23) FA® {g.l.b. §'E’3 (eh(ﬁ)s i.ef&ﬁ)z < _)} = Ea* < Bh(&}
: n
& ! @) > 1

)

To derive limits fox Eﬁ\“ consider a real variable p which is restricted
to values >0 and(x 1. Let Q(p) denotec the probability thut
Oz o pﬂ.km): \Then we obtain

9 N

\Vv 1 1
(A:24) :@** ___f [M_h(mgﬂ (eh(ﬁ)z | IGE > _)] aQ{p
o p

Hemje:\a-n upper hound of Eg** is given by
4

1
{A:25) AMD [Lu.b‘ oEs (e“mz | #0022 —)]
p P

Since 4*® is a lower bound of Ey**, we obtain the following limits
for 6y,

(A:26) AMD

A

1
Eg** £ AX® [l.u.b. iy (emz | 102 > —)]
e I

[h(8) > 0]



LIMITS FOR TITE OC FUNCTION 163

Putting
(A:27) g.l{.b. ¢E, (ek(ﬁ}z [0 < E) _—
and g
(A:28) CLub. pHy (e}‘“”z A= E) = &
e P
incqualities (A:23) and (A:26) can be written as
(A:29) BMOy < gt < BhO ~
and O\
(A:SU) AR < Ep = Ah-(a)aa ‘\

Since B < 1 and A > 1,* we see Hg* < 1 and FEy** .>f‘1':if R(8) > 0.
Trom this and relations {A:19), (A:20), and (A :SOLQIIVTOIIOW'S that

AMD 54 PIQNN]
(A:31) L= g B = Lo = @(ﬁxc_ 20
where A(6) > 0. PN\%

It A{6) < 0, limits for L{6} can be gbtained as follows. Let 2= —z
A'=1/B and B' = 1/4. Consid.éz;r‘ the sequential test § defined as
follows. Continue taking obser:\]:htions as leng as log B/ <&y +---
+ 2 < log A”. Terminatethe'process with one or the other decision,
depending on whether 2/, &%+ + @ < log B or = log 4", We shall
let £/(#) be the prob@ﬁ{'{% that at the termination of the proeess the
cumulative sum 21 > - + 2’ is less than or equal to log B”. Then
L'(® = 1 — L(fxy Furthermore, we shall denote the quantities 2(6),
7, 8 cnrrcspoﬂ@i\n"g to the test & by A'(6), »'s, and &4, respectively.
We can a.ppk’\&!& 31) to the test &', since #'(§) = —h(g) > 0. Thus,
wo obtai;%...:

NN e §ed™O — 1
(;}\8“2)’ 11.!?;'(8) _ ﬂraB;h’[{J} ”5— L’(ﬁl) é m(ﬁ
\ 3
where #/() > 0. Since ng and & depend only on the distribution of
h(#)z, and since ¥ (02’ = hi{f)z, we have 7's = s and 85 = ds. Sub-
stituting, in (A:32), 8 for &p, ns for s, 1/8 for 47, 1/A for B!, —h(f)
for 4’(), and 1 — L() for L'(8), we obtain

4 We have assumed that B < 4, Sincewelet B = 8/(1 — e)andd = (1= 8)/e,
we musk have 8/(1 — @) < (1 — f)/e. Multiplying thig inequality by «{l — a},
we obtain o8 <1 —a — 8 +af, e, 0 <1 —a—8 Hence # <1 —a and
1 — 8> & and thercfore B < 1 and 4 > L
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B 1 5B _
BB _ A}*("” — {8 = 5 Bh(fiT_H__‘ih(ﬁj
where A{(f) < 0. Hence
1 — Ak(ﬂ) 1 — 7?6-’1.!?'(9)

(A34) B e = 1O = g

(A:33)

where k() < (.

We can summuarize our results as follows. If A(6) > 0, limits,for
L(g) arc given in (A:31), Tt h{f) < 0, limits for L(f) are givén>in
{A:34). 'The quantities & and g are defined in (A:27) and GAZSS).

In Sections A.2.4 and A.2.5 we shall ealeulate the v Jlueg"of 85 and
g for binomial and normal distributions, If the limits of: L(8) as given
in (A:31) and (A:34) are too far apart, it may be (le&uabl( to deter-
mine the exact value of L(#), or at least to find a (,Joém approximation
Lo L{#) than that given in (A:31) and (A:34). NAMmethod of dealing
with this problem is deseribed in Bection A4y NThere the exuct value
of L{#) is derived when 2z can take only d\finite number of integral
multiples of a constant d. Tf z does notshgwe this property, arbitrarily
fine approximations 1o the value of L{#) can be obtained, since the
distribution of z can be &ppro‘;imat{d"to any desircd degree by a dis-
arcte distribution of the ty pe. mentmned above if the constant d iy
chosen sufficiently small. .

P4\

~ A.24 Calculation of %}fm 1 for Binomial Distributions

Let X be a randofiyvariable which can take only the values 0 and 1.
Let p; be the pmbablhtv that X = 1 when H; is true (i = U 1), Let
I be the hy ‘ﬁﬁ.ﬂﬂe‘il& that p is the probability that X = 1. Denote
| — 9 by a}]d L—p:bv g (i = 0,1). The distribution f(J p) ol z
is givendas follows: 1, p) = p and f(0, p} = ¢q. It can be assumed
mthout loss of generality that p; > po. The moment generating

ﬁ{nétl()n of z = ]-Og;Ex} p )

o0 =5 = m L= () +o(2)

Let #(p) # 0 be the value of ¢ for which ¢(f) = 1, ie.,

R(p} hlp)
L1 a1
p(—) +q(—) =1
0 Go

iz given by
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First we consider the case when A(p) > 0. It is clear that ¢¥® =

[f(,x’ P

Alp)
__.‘] > 1 implies that z = 1. Hence ¢*® > 1 implies that

2hip) f(lr pl) AR " hp) ‘
‘ B m AL . From this and the delinition of &,
o ) 0/ -

Po
given in (A:28) it follows that

f{p)
(A:35) 5, = (&)
Lo

where A(p) > 0. Similarly, the inequality e} < 1 implies ol
e — (g, /gy, From this and the definition of 7, given in{A+273

it follows that 2N
o A(p) \ \/
(A:36) my = (—) N
do 4D
where A(p) > 0. o\
1f A(p) < 0, it can be shown in a similar way, that
g\ \\“
(AST) 8y = (—) A
Go/ ANV
where h{p) < 0, and A\
AN ACP)
of D
(A:38) Np T *—)
% Mo

where A{p} < 0. Ve
WO
2§ . .
- A2.5 Caleulation ofidand 1 for Normal Distributions
We shall now assixme that X ig normally distributed with unknown
mean ¢ and know variance o®. We can assume without loss of gener-
ality that q\‘%]_: gince this can always be achieved by multiplication
by a pquén‘a’ionality factor. Then

2N 1 42 .
(A30) flo, 8 = —.=¢ Yo —t) (i =0,1)
St Ve
(A40) fGe, 8) = 3 i@’
’ Vor

We can assume without loss of generality that 6 = —A a‘nd 6 = A
where A > 0, since this can always be achieved by a translation. Then

g
(A1) z = logJ}((Z—’b% = 2Ar.
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The moment generating function of 2 is given by

(A42) Eple™) = RO 200
Hence

g
(A43) B(E) = — —

Substituting this value of A(#) in (A:27) and (A:2R8) we obtain

1
(A4} 8 = lu.b. oT, (G—EB:C | e > _) ~
? P
and 1 A
{
(A:45) ng = g.l.b. ¢Es (8—23$| g20e < E) O

For any relation R let Py*(I) denote the probability) that the rola-
tion E holds under the assumption that the dlstnbut%n of z is normal
with mean ¢ and varignce unity., Furthermore, I¢k Pg*”(R) denote the
probability that A holds if the distribution of%"is normal with mean
—& and variance unity. Sinee ¢~ is equaNo the ratio of the normal
probability density function with mean ¢ =0 ‘and variance unity to the
normal probability density function with mean ¢ and variance unity,

we see that X .’;
' Py** (8—299; > 1.)
{A:46) Es (3_2'3“ | giz\ 2N l) — I’o
e P P,* (6—20:1: > ;)
and K. \ P

LA

¢ N } 7 Pﬂ** (3—292: 1)
(A:47) :.%Y'emzax | o2 < l) - ¢

§ s (e—% B _1_)
\ ¢

At ca:n easily be verified that the right-hand members of (A:46) and
(3&\4:) have the same values for § = \ as for § = —A, Thus, & and
ng also have the same values for # = Aasfor @ = —\. It will therefore
be sufficient to compute 3 and %5 for negative values of 8. Let 8 =
—X where A > 0. First we show that g = 1/85. Clearly,

1

P :Hc( 2haz < _)
£ ¥ ¢ gapﬂ#*(e—ﬁ?\z > f')

:X48 = - JE
( ) Py = 1)

P@* (62?\.1: < i)
£

1=f< =)
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Letting ¢ = (1/p) (0 < p £ 1) in (A48) gives

fPE** (eﬂz = _1_) PG** (6—2:\:5 l
{ p

%
S’

(A 4D} 1 =
Pg* (82?\3 < _) pPy* (6—2}\1 = 1)
{ p
IMence
Supﬁ** (82}\z é ]_> N\
- 1

(A50) w0 = glb. ; = — —

Pg* (327\9: < _) P 8—2?{2:3\2 Z

£ 111 b, 'i‘—*-%

Because of the symmetry of the normal du{ﬁhtwn) it is casily secn

that AN/
1 N 1
pPy* | 6™ = ~) W\ pPe** (em z —)
‘:n‘“ P
lub ? =lirh. = B
° L &

™ 1
P (e----:’-?«m o Pyt (82}‘3 = -
P
Henee ¢\J

{A:51) ‘,i"; =

Now *sha.ll calculate the value of 8. Let G{x) denote

1 r
ji):\ Zdt. Then
'\/27;\

w4

J 1 1 1 1
\Pﬂ** eQ)\x = __) - Pﬁl** (th g lOg—) —_ Pﬁ** (JU —lOg—>
g P 2R iy
oL )
B — g - =
2 g o
Similarly

2) 1 P*( }1[ 1) G(II 1+?\)
¥ g2 = — ] = = —log-] =G| leg-
P (g ‘p) AN 2 e

v
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Let 4 denote {1/2x) log (1/p). Since p can vary from 0 to 1, u can
take any value from 0 to «, Since p = ¢ 2™, we have

pP EE 3 (62)\1 > _)
- o Gl — N
(A52) & = lub. LA (g—m _!)
Py (em . 1) - Glu+ N
p

- We shall prove that
(A:53) x(u) = g 2%

0= u

A

=)
Gl —N) O
Glu + N) ,‘\t\'

s a monotonically decreasing function of % and CODﬁGQLlOntiT}} haz a
maximum at « = (). For this purpose it suffices to sho\\ si:f'rat the de-
rivative of log x () is never positive. Now

\ ~\
(A:54) log x(u) = log G — ») — log Gy + XN 2au
N
1
Let &(x) denote ﬁr ¢~ " Since d-i G'(u) A‘ rl)(u), it follows from

{A:54) that \’
B{u } " a(u + N
T Gl ““. N Gu+n
It follows from the mean A ik theorem that the right-hand side of

;
(A65)  -log x(u) =
o

(A:55) is never positive 1{\— (T)Ez;] is equal to or less than 1 for all
values of . Thus, . need merely to show that
(A:56) p(w}\i[ ’\'bf(u)(*(u) G () B (1) _ YW + PE ()
N 10) () ()
A :,\ RO B0 _
\“ @ (u) G(u)

B{u)
Let % denote 6—5 The roots of the equation ¥? — uy — 1 = 0 arc
i

Hence the incquality ¢ — uy — 1 £ 0 holds if, and enly if,

w—Vud 44 w+ VP + 4

2 y 3

A
A
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Since g cannot be negative, this inequality is equivalent to
D) w4+ VvVt +4
Gw 5 2

Thus we merely have to prove (A:57). We shall show that (A:57)
holds for all real values of w. Birnbaum * has shown that for 2 > 0

V44 —u

{A:H7)

IiA

{A:58) Y $(u) £ Glu)

Ience 2\

(A:59) i Vil tdtu (> O O
Glu) Vul+4d—u 9 N

which proves (A:57) for # > 0. Now we prove (A:5?),§;:‘Er W< 0. Let
u = —p where v > 0. Then it follows from (A :59)“,&313

G?(v)__ - 2 O

Gw = Vit <

Tuking reciprocals, we obtain, from (A 60) d

(A:60)

60)  VEFS -
®{z) _,j‘:'. C2

@ 2&”—:’@_ 2v<TJ_(v_) _ Gy

@(u}\i”' &(z) &(1)

se obtain, from (A,{_vl) ,

o VE it VRt
O%w =T 2 T2
Takin:g;:‘;r\eciproc&ls, we obtain
”\:\'?(u_)<_ 2 Zm—v=m+u

G~ VAt 2 2
Hence (A:57) is proved for all values of % and consequently 8 Is equal
to the value of the expression (A:53) if we substitute 0 for », Thus
G{(—H»)
TGO

7. W. Birnbaum, “An Tnequality for Mills’ Ratio,
Statistics, Vol. XI1T (1942).

(A:61)

Sinec

-+ 2w

1%

(A :62)

(A:63) 5 = (n=10D

" e Annals of Muthematical
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Formula (A:63) has been derived for the case in which 6, = —a,
1 = 4, and ¢ = 1. It can easily be seen that for general values 6,
8, and ¢ we have

(A:64) & =

1 fo + 6 |
whore A = — | — ———— -
o 2 i

G{—N)
G

A.3 UPPER AND LOWER LIMITS FOR THE ASN FUNCTION OF A BE-
QUENTIAL PROBABILITY RATIO TEST

s

A3.1 Derivation of General Formulas for Upper and Lower\Lmuts

As before, let ¢ ‘~f},
x, f1) 2y B m'\.\"
z = log I, 0) z = logf( » 6) (G =38,2/ -, ad inf.)
f @, 80) Jlz, 80) \
PN\
and let % be the number of observations Aegiived by the sequential
tost, ie., n is the smallest integer forMwhich Z, = 2, 4---+ 2, is

cither =2 log A or £ log B. To deteymine the expected value £{n) of
n under the hypothesis # that 6 1s .the trus value of the parameter, we
shall consider a fixed positive mte;ger N. Thesum Z ¥ =2 +--+sx
can he split in two parts as follmw

(A:65) =z, 42,

where 2/, —zﬂH+ ot zyife = Nand 7, =4y — Z,itn > N.
Taking expected mﬂueq on both sides of {A: bJ) we obfaln

's.

~\
R\ NEo(2) = Bs(Lo + Z',)

Tet P@ denme the probability that n £ ¥, Then

O Bz + 1) = Patien (Zn + 2') + (1 = Py)Boy*(Zy)

where the operator Ky means conditional expected value whenn £ W,
and Fyx* means conditional cxpected value when n > N.

Bince Zy lies between log 8 and log A when n > N, and sinee
lim (1 — Py) = 0, we obtain from the lagt two equations

(A:66) lim [NEs() — PuEoy(Z, + Z',)) =
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For any given value of n < N, the variates 2,4, --+, 2 are inde-
pendently distributed, each having the same distribution as z, Hence,
we have

Ean(Z' 0y = Ean(N — n}Es(z) = —Ean(n)Es(2) + NEu(2)

From this and (A:66) we obfain, since im (1 — Px)N = 0,

New

(A:67) \1211 [PxBan(n)By(z) — PyBon(Z,)] = 0

Since ~
J&I.L:LLLP‘.\;EHE\T(?@) = Fy(n) and A}i;niPA.-EgN(Zn) - E (%‘”‘l

equation (A:67) gives f.?

(A68) EolZ0) = Es(m)E(2) m.\(’f ’

Hence v/

(A:69) Eyln) = -

i Fy(z) = 0. Tet Ep*(Z,) be the eonditional expected value of 7,
under the restriction that the sequential analysis leads to the accept-
ance of Hg, i.e., that Z, = lnng: * Stmilarly, let B**(Z,) be the con-
ditional expected value of % under the restriction that Hy is accepted,
Le., that Z, = log 4. Since 7.(6) is the probability that Z, = log B,
and 1 — L{g) is the q{éobﬁbiﬁty that Z, = log 4, we have

(AT0) B2 [LO)E*(Za) + 1 — LOIE*(Z,)
From (A:GQ,):;}E& (A:70) we obtain

& LOTHE,) + [I — LOIE*(Z,)
AN Bow) :[ (0)] 7 * (%) ‘[ ) Ey )
O Eyl2)

.\

The exact value of Be(Z.), and therefore also the exact valuc of
Eg(n), cun be computed if 2 ean take only integral multiples of a con-
stant d, since in this case the exact probability distribution of Z, was
obtained (scc Section A4). iz does not satisfy the above restriction,
it is still possible to obtain arbitra ily fine approximations to the value

1, Stein has shown, in “A Note on Cumulative Sums,” The Annals c?f f‘Lf a.t}.;e—
matical Statisties, Vol 17 (1946), that all moraents of % must be finite. This implies

that lim (1 — Py)}N® = 0 for any positive integer k.
N=a
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of E3{Z,), since the distribution of z ean be approximated to any de-
sired degree by a discrete distribution of the type mentioned above
provided the constant d is chosen sufficiently small.

If both | K(2) | and the standard deviation of 2 are small, £*(Z,)
is very nearly equal to log B and Ey**(Z,) is very nearly equal to
log A. IHence in this case we can write

[Li]log B + [1 — L{8)] log A
Ey(z)
This ig the same approximation formula as given in (3:57). QO
Ta judge the goodness of the approximation given in (A:72) ye shall

derive lower and upper Iimits for Ey(n) by deriving lower s Wpper
limits for Fg*(%.) and Ey**(Z,). Let r be a non-negative variable

(A7) Eyln) ~

and let A\ 3
' 4 ~\.’

(A:73) b=MaxEylz —rz2r) (0 200

and N

(A:74) Fo= Min Bz +7 |z +r 0 (20

N/

It is casy to see that .~.".'"

(A:75) log A < E/(Zh) < log A + £
d Q-

an x~~>

(A:76) lodB.F &5 < Hy*(Z,) < log B

We obtain from ({r.:f;l), (A:75), and (A:76)
L®)dogB + &) + [t — LB log A

ATT e = K
AN, Zs(o = B

...\:ff; Ny < [Z{8)] Jog B + [IF—(J;(B)] (log A + &) i Ey) > 0
and o
(A7) [L#)]log B + [1 — L(®)](log A + %) < By

Eylz)
< L@ (log B+ &) + 11 — L{®)]log 4 i By(z) < 0
Ey(z)

The limits given in (A:77) and (A:78) will generally be close to each
other for values # = 8; and ¢ = 6,. However, for values # betwecn
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g, and & the difference between the upper and lower limits may be-
come very large, since Kg{z) may be near {or equal to} 0 for such
values ¢ In fact, wo have seon that Ep(2) <0 and E{2) > 0.
ITence, if By(z) is a continuous {unetion of 8, there will be a value &
between 8, and & such that Eaf{z) = 0. For 8 = ¢ or for values ¢
very near ¢ the limits given in {A:77) and (A:78) are of no practical
value, since they are far apart.

We shall now derive limits for Fa{n) which can be used for values #
in the neighborhood of #.2 Tor this purpose, we shall expand ¢*®%»
in a Taylor scrics ag follows: 2N

(A7) PO =14 RO Z, + HWMOPZ + SROFZ N,

whare A is some value between 0 and 2{)7,. From {(A:] T)’ :ir?d (A7)
we obtain N

(A80)  WOEs(Z,) = — 5O E(Z.) —~ %[?a-(ﬁJl%fZ.n3e“)

From this and (A:69) if follows that Y,

h(®) R\l
A8l Bon) = — —— Bp(Z,2) S Ey(Z,%6")
( ) 5(n) 28, (2) 8(Z2") D) ]

Thus, upper and lower limits for, E@'GE) can b(? obtained by der?vi.ng
upper and lower limits for E?(Z;f) and Ep(Z,%¢"). To derive limits
for Fy( 7,2}, we write -

(AS2)  EyZ.2) = {z(@)\zaa*(zﬁ) [ — LOEZD

where the opcrator\E* stands for conditional expected value when
Zy = log B, andZE** gtands for conditional expected value when
Zy Z log A. ,'\Lét ¢ denote Z, — log B and ¢’ denote Z, — log A.
Then O

AN
s\ b ¥ )

(ARBAN B#(Z,0) = (log B)? + 2(log B)Ee*(¢) + Es*(e”)

4 .\" ¢
)
(A:84) Eg*(Z,2) = (log 4)% + 2(log AYE*(") + Eg** (")
Since T,*(¢?) = 0 and (log B)Eg*(€) = 0, we obtain, from (A:83),
(A:85) (log B)® < Eg*(Z,)°

*8oe also the auther’s paper, “Some Tmprovements in Sfal'.ting Lim_it_s for t}.le
Expected Number of Observations Required by a Sequential Probability Ralio
Test,” The Annals of Mathematical Statistics, Vol. 17 (1946).



174 APPENDIX

The quantity £ given in (A:74) is a lower bound for By*(¢). Since
log B < 0, {log B)f's is an upper bound for (log B})E*(¢’). An upper
bound for Eg*(¢'®) is given by

(AB6) s = MaxEyl(z +n?|e+7r=<0] (rz0)

Henee '

(A8T) Eg*(Z) < (log B)® + 2(og B)¥'y + s
Thus we obtain the limits

(A:88)  (log B)® £ Ee*(Z,%) = (log B)? + 2(og B)Yy -+ ¢

In a aimilar way, the following limits ean be derived for Fr,f*ftz\f):

(A:89)  (log 4)® = Es**(%,%) < (log 4)* + 2(log 1)5@‘% o

7

where & is given in (A:73) and M\V

N

(A:90) fo= Max Bz — %[z 27] 3@ = 0)

If we denote by L/(#) the lower limit .11-1}1 hv L7(8) the upper limit
of L(#) given in (A:31) [(A:34) when & (@ ¥ 0], we obtain from (A :R2),
(A:88), and (A:89) the following IlmLLH for Eg(Z;)

(A1) L'(B)(log B)® +[1 — Lif@'l( og A £ E4(Z,5
< L'0){(eaB)* + 2(log B)e's + ¢l +

N .
O 11— Z@llog 4)* + 200z At + (3]

Using a similar miethod, one can also derive upper and lower limits
for Ep(Z,%eN) xuhbcaut any diffieulty. We shall, however, not derive
such Hmits he(e since we are interested in ohta,mmo llI[llt-; for Ey(n)
when 9 J\Jeuﬂ’ 6" and since, for such values of 8, the second term in
the rightslland member of (4:81) is negligible. We shall show that, if
h(d), i”g(z), and Es(z*) are continuous functions of g, the factor

b,(ﬂ)]e/[ﬂ(z)] in that term converges to 0 as 8 -— ¢. It follows from
‘bLe' discussion given in Section A.2.1 that h.m h#) = 0. Since

(A92) Fy(®7) — Eﬂ{l L e +[h(6)]2 +[h(39)] W(E)z} .

X 0=usl)
we ohtain, when A(8) £ 0,

h (6) [A (9)
=+ 31

(A;93) {z _I_ .3 Hh(ﬂ) } =0
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Thus

1

()
Ey [— 532 - gzg’e““”‘:l (h(8) = 0]

Es(e)

(A:94) o)

Assuming that Ey(e'?!) is a bounded function of @ in the neighbor-
hood of &, we see that Eg(| z {7/ *@ 111} ig also a bounded funetion of
g in a sufficiently small neighborhood of #.% Ience, Ep(e®e**®%) is
also & bounded funection of 4 in the neighborhood of 8. From this and
(A:94) it follows that

Ea(z) 1 8
A:03 - —ZE() < \
(4:95) s=0 h(0) 27 &) <0 D)
L~
From (A:95) it follows that )
RO N
A:96 lim —i— =0 O
(A:96) o B NS

The lower and upper limits for Fg(n), based on $A:81), will generally
be close to cach other for values ¢ in a small &ighborhood of #. Thus,
when 8 is near 8 these limits for Eg(n) cand®e used instead of the limits
given i (A:77) and (A:78). O

It may be of interest to determing.’ﬁhe limiting form of (A:81) when
g =¢. If Bp(Z,D) is & cont-in}loﬁé‘ function of & and E¢(Z,%e) is a
bounded function of ¢ in the peig}‘iborhood of ¢, it follows from (A :81),
(A:05), and (A:96) that* ¢

4 i~. } Eﬁ" (an)
: \ Y1) =
(A97) S - T

The bountiedné;é of Es(Z,3¢") can be proved if, for ¢ = &1, the ex-
pected x@é’p\ég (e” | et = %o) iv s bounded function of & and p
0 < g 3< 1). Since im h{g) = 0, there exists a constant ¢ such that
'Zﬁé’; [ < (el | forﬂzsin the neighborhood of 8. Hence, we merely
Yave to show that Fyle #') is bounded. Since gz d P

is sufficient to show that both Eg(¢®) and Ey(e~?") are bounded. We
have

1
Zn=logA) £ 4 Lu.b. I:pEg (e’ ] & = —)jl
e o

s This follows from the fact that |8} | < 1 when 8 is sufficiently near &,
4 A different racthod for deriving (A:97) was given in the autht_:)r’s. peper, “Dif-
ferentiation under the Expectalion Sign in the Fundamental Identity,” The Annels

of Mathematical Stalistics, Vol, 17 (1046).

By (ez"
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where 0 < p < 1. Since

E4(e® | Z, <logB) = B
we obtain

1
Es(ef™) £ Alub [pEg(P | e* = )}—!—B
P

The right-hand member of this cquation is bounded, sinee
1 . } )

pEy (ez | e = —) is bounded by assumption. Henee Ey(e?") is beutded.
£

The boundedness of Es(e™%") can be shown in a similar wiz») Upper
and lower limits for Ey {n) can be obtained from (A:97) tn lbht)stit-ut.ing
for By (Z,%) the upper and lower limits given in (A:91

Wo shall now compute an approximate value of L'g,(n,), neglecting
the cxcess of Z, over the boundarics. Since LA} = 0, we obtain,
from (3:43), 8 \)

(A:98) L)~ 8 A\M

log A4 \ Iog b

fence ,j"..
log 4 8 —logB
Ep(Znd) ~v e (g B+ — P 7 (o 4)2
logAd —log BN log A —log B
K = —logBlog4
¢S
Thus an approximat’e\\(zﬂue of By (n) iz given by *
Ee(Z,YY —logBlog A

A:00 \F - ~ -
@ OFet = Eo @

If the%)@ function L(#) of the test is known exactly, close limits for
Ea(n) ean be derived which remain valid over the entire range of .
e, Jshall indicate bricfly the derivation of such limits. Denote by

\,ﬁg(z) the distribution of z when ¢ is the true value of the parameter.
By the distribution of z eonjugate to the distribution fs(z) we shall
mean. the distribution ¢*®4f;(z). In important cases, such as for bi-
nomial and normal distributions, to any given value 8 of the param-
cter there will correspond a value # such that f3(z) is conjugate to

EW. Allen Wallis obtained this approximation formula independently of the
author. T% is included in the publication of the Statistical Research Group of
Columbia University, Technigues of Statistical Analysis, Chapter 17, Section 7.2,
MeGraw-Hill, New York (1946).



LIMITS FOR THE ASN FUNCTTON 177

fol2), Le., faz) = @ fa(2). We shall call § conjugate to 6. It has
heen shown elsewhere ¢ that

(AI00)  Eo*(dO%) = L@ o geeponm L7 LO

5®) 1 — L)
On the other hand,
(A:101) Egz;k(eh(ﬂ)zn) _ eh{ﬁ)E&*(Z@Es*(ek(ﬂﬂzn—Es*(ZnJI)

2
_ eh(ﬁ)EG"‘(Z“}Eg*{ [M:)] Zy — Ea*(Zn)IZE"}
N\

where v lies between 0 and A{(®)[Z, — E¢*(Z,)]. Similarly
(A1102)  Ep*(e @) , R
L pongn [y PO g gy e»}

whore o Lios bhetween 0O and R(®)[Z, — Es**(Zx )1~\me (A:100),
(A:101), and (A:102) we obtain

\./

Ey*(Z,) 1 L(B) \\;
oy BfZ 1 &
@103 o @ ROEE CLO)
1 Iz( )]2 .
_ %—E T — EMZ)PE
OTAER ( & ! {[ o g])
and ‘..;
S B 1o, 1210
A:108) —po— {@Bﬁ(ﬁ’) BT 10
2 ’l
A log(l-l-[h( )] 1:**{[:“ Ee**(znn?e”})
@E)
Thus

(A:105) (43“

. \__ 1 { 1 I£-2_|_ l—L(B)]lou‘E-:ﬂ + R
»\’3'5"\ ~wme 177 e 1 - Liﬂ)}
whexe
(\A:fOG)

1 ROF 2l
-~ {L®logl!+ ——~E [Zn — Ee*(Za)]"¢" | ] +
B h(B)Ea(z)[ @ Og( ! [ J)

n - zontos (1 + wﬂ |70 = B 2]

lizations of the Theory
®8ee, for instance, the author’s article an “Some Genera
of C‘un;uhtwc bumb, of Random Variables,” The Annals of Mathematical Statistics,
Vol XVI (1945).
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Since h{(8)Fs(z) = 0 (see Section A.2.1), we see that £ = 0. Flence a
lower bound for Es(r) is obtained by substituting 0 for E in (A:105).

To obtain an upper bound for Eg{n) we shall derive an upper hound
for B. Clearly

(A:107) {(Z, —log B) + [Be*(Z,) — log B]}? = [Z. — EMZ)T
whenever Z, = log B. From this and (A:76) we obtain

(A:108) [(Z, — log B) + &6)* 2 [Z, — Eo*(Z,)) ~

whenever Z, £ log B. Similarly, we obtain N .
¢\

(A109)  [(Zn —log &) + 8 2 [Zn — B 20T O

whenever %, = log A, where & is given by (A :‘?3).',,}13’1:0111 {A:107},
{A:108), and {A:109) it follows that R4S

(A110)  Be*{[Z, — Ee*(Zo)Pe"]

w\,/ . .
< Eg*[(Z, — log }{“17\5’8)23[ Zp log B+Eg | R 1
and

(Allll) Eg**{[zn — K **(Zﬂ)]z ?.,«} ”

< Ea** (Z”* —log A + s@)2{{3(:4,.~1og.4+se)|h(~fﬂ I]
Furthermore, we have

(A:112)  E*(Z, _10‘,.3\‘_ I )2 | 85— logBIEEIIﬁ(ﬂ}IJ

< Max B,*[(z FT¥\E’ Pt IOy oy < 0] = o (say)
and \<&
(A:113) Eﬂtﬂ}Z“ ~log A + g)2eF ox AT@IEE) |

< MEXEHG — r + %O [ gl = ()

)
Frqiix\: (A:106) and (A:110) through {A:113) we obtain the following
Upper bound for R:

a(ﬂ)] J
" +

[~ (9)] B

(A.:].].‘]:) B é L= m(.{;(ﬁ) l()u’]\

[t — L6)] log {

An upper limit for Ep(n) is obtained by substituting R for B in
{A:105). The value of £ will genorally be small over the entire range
of 8.
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A.3.2 Calculation of the Quantities & and £’ for Binomial and Nor-
mal Distributions

Let X be a random variable which can take only the values 0 and 1.
Let the probability that X = 1 be denoted by 6. Then the distribu-
tion of z is given by flz, 8), where f{1,8) = ¢ and f(0,6) =1 - 4
Let H; be the hypothesis that ¢ = 6; £ = 0, 1). It can be assumed

without loss of generality that 6y > 8. It is clear that log ;Ex’ l; >0
3 D
Y o fle, 81) 7Q, 80
implies that =1 and consequently lo = log
p ® 1) " AL
#
log L Tlence :’\
90 W
A (,,:"
(A1LE) tp = Max Kylz —r | 2z =log —1’.‘;3
@y _ Ol
Yinee log & < 0 implies that 2 = 0, we havg '
f(’}, BU) \\“’ 1 8
-t
(A:116) gg—l\[lnbgz+r|z+r<0)\ﬂ logl p
6

Now we shall caleulate the valuegs s;;“and £5 when X is normally
distributed with unit variance. Leb™

fz, 6 = \/12 HESE (=0, and 6, > @)
and O
fw, 0) = \%; ~He—a?
We may assume ﬁithout loss of generality that §p = —A and 6 = A

where A > 0'\111&3 this can always be achieved by a trunslation.

Tl \J
en ’ :\\

(ALLEN z = log=———— = 24z
oY

a\Y ) x

h‘:fj &{x) denote - o ¢ 2 and let G{z) denote \/_ f E dt Let
{ =2 —8 Thenz= 2A( + 6) and

(A:118) Eplz —r [ z—rz 0

T T
oap _ 9——;0)
—2Aﬁg(t+9 |t+ ZA

— di = — [~ ) + B(to)]
- f (6~ 0 H & = )[
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where
,r

A:119 fp=——1#0

(AiL19) 0= or

In Secction A.2.5, equation (A:56), it was proved that [®{)/G(te}]
— {5 is a monotonically decreasing funclion of f). Hence the maxi-
mum of Bglz — 7]z —r 2 0) is reached when » = 0, and consequently

(Ale) = .E.._ [SG("—B) ‘E“D(—B)] — 9A [q L cb(—ﬂ)]
: & = a9 = e

Q)
Now we shall caleulate £5. We bave AL
1 2\ A
(A:121) = Min Eelz +-rj2z+7 = 0) N\

= — Max Eyp(—2 — 'r| ——r =0 ',,f"‘",

237>

r AN
= —32A Max Eg(-:c — —[ - = 0)
r 24 NS 24

AY;
Tetf = —z + @and ty = (r/24) + 6. ]{ie‘ﬁ

, r N
A:122 E’(—x-—— —x——~“§~0)=E£—i t— =0
( ) Ep 2&| A, al. o 0 )

A
o\

NT 1 ® ® (o)
= f (t — )o@ di=———to
SR ¢ CY G{to)
Sinece this is a monotgl\ﬁqﬁ—hy decreasing function of #y, we have
£ \s,l
B{f
(A:123) Max B\ —= — L] -z — i = O) = (,) —
Qs 24 2A G0}
From (A:lZ{L:}@ind (A.:123) we obtain
"\50
N~ (8)
(A2 o= —24|— — 10
N ’ G(®)

\ j’ormu]as (A:120) and (A:124) have been derived for the case when
gy = —A, 8, = A, und ¢ = 1, For general values fy, 81, and o, the
values of & and &5 are given by

1 _ (-7
(A1125) b= —s i+ 2]
v G{—8)
and
1 B
(Aa120 b=~ L0 [0 7]
T &9
where

g=}(9 _EQE)
a 2
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4.4 DERIVATION OF EXACT FORMULAS FOR THE OC AND ASN FUNC-
TIONS WHEN z CAN TAKE ONLY A FINITE NUMBER OF INTEGRAL
MULTIPLES OF A CONSTANT

Tn this section we shall derive exact formulas for the OC and ASN
f (xr 91)

functions when z = log f(—:cﬁ—) can take only a f{initc number of inte-
1 Y0

gral values of a positive constant d. This is a rather general result,
since any distribution of z ean be approximated arbitrarily closely by
a discrete distribution of the above type if the constant d is chosen
aufficiently small. ’

To obtain the exact OC and ASN functions, we shall first deslve
the exaclh probability distribution of the curaulative sum.\'Z‘,;.\:
2y -+ 2y 8t the termination of the gequential process. § Tw what
follows in this seetion the probability of any relation and,,fﬂ{é'éxpected
value of any random variable ave determined undte“Qle'assumption
that @ is the true value of the parameter.t Howevénato simplify nota-
tion, we shall nol put this in cvidence in the fartatilas, ie., we shall
write P instead of Py and B instead of Ea. 'e’t;bl and gz be two posi-
tive integers such that Pl = —pd) and F(2 = god) arc positive and
z can take only integral multiples of d which arc = —gid and = god.
Denote Pz = 1d) by Re Then thg;ﬁbment-generat-ing funection of 2
i3 given by ONY

[
(A:127) Ee) = X hetd = () (say)
< 4
To chtain the roojts\gf the equation () =1, we let gt =y and

solve the cquationis™
A\ X 1z

1ac ON hat =1
(A128) :»\1. 3‘2—:[:1 u

Let ¢ dé;ﬁ’s}cc 71 4 go and let the g roots of (A:128) be ug, * oy U 167
spuc-?ci';{'e]y. We ghall assume that no two roots are equal, 1.(.3., U 7 Uy
fog % 4. Substituting for ¢ in the fundamental identity (A:16)

we obtain ,

(A:129) B =1 G=L9

Let [al be the gmallest integer = log A/d, and [b] the largest integer
< (log B)/d. Then 7./d can take only the values

(A:130)

Bl =g+ 0, @~ + 2 Y, fal, (fal + 1), - ([a) + g2 — D

1 Tf there are several unknown parameters, denotes the set of all parameters.
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Denote the g different values in (A:130) by ¢, - -+, ¢, respectively.
Furthermore, denote P(Z, = ¢d) by £ Then equations (A:129) can
be written as

1]
(A:131) D=1 G=1, 9
=1

Let A be the determinant value of the matrix [|u] 7,7 = 1, - - 0
and let 4; be the determinant we obtain from A by substituting 1 for
the clements in the jth column., If A # 0, it follows from {A:131) thab,
P{Z, = ¢d) = ¥ is given by

Aj ¢ '\,,'\.
(A:132) £ = = ; O
Thus, the probability L(0) that the process will term'ma@-ef with Ly =
log B is given by ‘“,;\"
A; 4
(A:133) L) = Z 7D

7
A

liA

where the summation is Lo be taken over a‘li’ﬁ\aluesj Tor which de;
log B. Bguation (A:133) is an exact equition of the OC function,

From the probability distribution of;z;: we can easily derive the ex-
pected value By(n) of n. 1n fact, i.r}S&’étion A.3 it has been shown that

ENZ.,
Eyn) & L(%n)
O Jﬁtz)
But - \
A
(4134 oM7) =)
£ ) i=1
Hence “\’\
O 1 Ggad
(Ai135) N Es(n) = — Gas
..;.' ﬁe(z) =1y A

is thesdadet equation of the ASN funetion.

The/method of obtaining the probabilities &, ---, &, as described
above, requires the computation of the rools of the polynomial equa-
tion {A:128). This is not necessury, however, if a method given by
Girshick is used.?  Girshick proceeds as follows., Multiplying

(Zh.mi — 1) by «™ and (Z&u‘""' — 1) by w1 we obtain two
7 7
polynomials f(u) and F(u), where f(x) is of degree gi 1+ gz = ¢ and

* M. A. Girshick, “Contributions to the Theary of Sequontial Analysis,” The
Annals of Mathematical Statistics, Vol. 17 {1946),
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F(u) of degree ¢ + {e] — [b] — 2. According to (A:128) and (A:131),
every root of f(u) iz also a root of F(u). Hence

F(u) = flu)f*(u)
where f*{x) is a polynomial of degree [a] — [b] — 2, ie.,
) =kbg+ b+ -+ kt;]“[bl_g_u[a]—[b]—z

Putting the coefficient of any power of » in F{u) equal to the cocf-
ficient of the same power of u in f{w)f*(u), we obtain a system of
g + [a] — [b] — | Hnear equations in the ¢ + [a] — [8] — 1 unknoygs,
£+, £a ko, k1, v, Ky —p—2, from which these unknowns can be
determined. Thus, the probabilities &, -+, £ can be defdrmined
without solving the polynomial equation {A:128). This ad}’aﬁtage is,
however, bought for the price of an increased number of Tméar cqua-
“tions to be solved. If the roots of the polynomial eqii:at-ioh (A:128)
are computed, only g lincar equations have to be sol'if,}d for determin-
ing &, -+ -, & If Girshick’s method is used, no poljrnnmial equation
is to be solved, but the number of lincar gqtﬁmons is nereased to
g+ Ta] = B — L. o

If g = 1, the OC function L{f) is a ginple expression of the roots
Uy, o, ug 1o fact, L) = P(Z, SlegB) =1 — P(Z, 2 log 4) =

1 — £, Wehave AN
CEURR w®
A= {m\ e e e e ke e e e .
.\'\ﬁéﬁ]—m+1 2, 2,
N
and \
O ullb]—ol-l-l ,ull'b} 1
A&
:t\‘":{l = '
:"\,, LA e L b. PR
§M Bt w1

Tth ﬁﬁlue of the ratio Ag/A is not changed if we multiply the ith
Q%;Gf A, as well as that of Ag, by w "B Thus

— —1—[H

1 w”h o w” .

m—1 1—1—{h]

2 Ag 1 g Ueg ' #

= — = _ — — 3]
g A 1 ow - w® 1 " 1+ (al— (8}
........ - LI o e
1 ug ugg'l 1 ugg; 'H:BI [ ]
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The cofactor of each element in the last column is a Vandermonde
determinant. Expanding the determinants in the numerator and de-
nominator according to their last columns and dividing numerator and
denominator by the Vandermonde determinant,

1 U1 1!-12 L u-l’“
=91
1wy w® - g™
we obtaln QO
I e - A
2 : : S AN
= (u; — 1) I I (u; — ;) O
_ Ay 4 A\
be = A 4 =L PAR
Zﬁl [(ui - nJ —H)J
Y

We shall illustrate the derivation of t.he'\éigi,ct OC and ASN fune-
tions by a simple example. Lot z be ajeandom varisble which can
take only the values 0 and 1, Denoto, Ly H; (7 = 0, 1) the hypothesis
that the probsbility that 2 = 1 ig Coual to p; (1 =0,1). Lot

1 — e 28 g —eg !
o= ol ops ooy
T\

Consider the scquentig) (ﬁeszt for testing Iy against H;. We shall com-
pute the probabiliti kt the process will terminate with the accept-
ance of Hy, and thé“faxpccted number of trials required by the test,
when the true p}:oﬁabi]it-y that z = 1 is ecqual to p = 34, In what
follows in thigéstetion, all probability statements and expected values
refer to thh(cr»i;qe when p = 3.

First.’yx}e compute ¢(t) = E(e”). Since 2z can take only the values

N\

a \ ¥/ —

\V Iog& =loge=1 and log l=m =loge™ = —2
To I —m

with probabilities 34 and 47, respectively, we have
¢(t) = Fo + e
Letting ¢’ = u and solving the equation

3 +41 L
7u Tu?
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we obtain the roots u; = 1, ug = 2, and ug = —24. The integers
¢y, €2, €3 are given by

¢p=logB—1, cp=1logB, c=1ogA

Henee
1 1 1
A= 210g fi=1 210gB 210g11
(_%)Iogb‘—l (_%)logﬁ (__%)logd.
1 1 1 -
Ay =11 gloz B olog 4 N
1 (_ _g_)log B (___ %)Iog A r:\"\.
o\
i 11 A
Ay = gleg B—1 1 2eed '1 3
(—pesi-t 1 (=Bt | K©
L 1 IND
A3 — 2]ng B-1 2].02.3 '\:]:\
(—ert (—HED

»

Then the probability that Ho \n-'le:Bg%f.bccepted is given by
*,“51 + Ag
s

O
The expected value o(‘n.is given by

( 104 ealg + cadds
D7 7 (= log B + DA + (log B)4; + (og 4)4s
'§“'= — (—5‘—-—'_-_"_'_" A

A 7 (= log B + 1A, + (— log B)A; — (log 4)4g
\ = ___________._.-——-—__,__._—
Q 5 A
A6 THE CIARACTERISTIC FUONCTION AND ‘HIGHER MOMENTS OF n

A.5.1 Derivation of Approxzimate Formulas Neglecting the Excess of
the Cumulative Sum over the Boundaries

7 i 50 Z, =log A if
Let Z, be a random variable defined as .follows "
Zp =2, 4t 2y = log 4, and Z, =log B if Z, = .logB. Denote
the difference Z, — Z» by e Then e is a random variable,
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In what follows in this section we shall neglect ¢, i.e., we shall sub-
stitute 0 for ¢. No error is committed by daing so in the special cage
when z can take only two values, d and —d, and the ratios (log 4)/d
and (log B)/d are integers, since in this case e is exactly 0. Apart
from this special case ¢ will not be identical with the conatant 0.
However, the smaller f E@) | and E(2%), the smaller the crror we com-
mit by neglecting . In fact, for arbitrarily small positive numbers
81 and 8; the inequality P(| ¢| < 5)) = 1 — 85 will hold it | @) |
and E(z%) are sufficiently small. Thus, in the limiting case when Z(z)
and E(z*) approach 0, the random variable e reduces to the constafiho,

As in the preceding section, all probability staternents and expetted
values will refer to the case in which 8 is the true paramefcrpoint,
without putting this in evidenco in the formulas by using ¥as a sub~
script to the operators P and E. Let ¢(¢) be the mordeN} generating
function of z, i.e., M'\(’

o) = E(e™)

To derive an approximation to the charactt’:ﬁsﬁ(: function of =, wo
shall consider the cquation N

G ;
NN

(A:136) — log $()\>F

where 7 is a purely Imaginary qﬁahtity. It will be assumed that ¢
salisfies the conditions of lomme A 1, Then, according to lemma A,
the equation — log #(f) = W has exactly two real roots in ¢: they are
t=0andt=h (h = O}i'“hrthcrmore '(0) and ¢'(h) both are un-
equal to . Ilenco, if &If[s)"is not singular at ¢t = 0 and ¢ = A, equation
(A:136) has two rogly, #(r) and t2(7), for sufficiently small values of
| 7| such that lﬁn%'zitf) = 0 and lim #(v) = . Identity (A:16) can
A= T=1

be written as,\"\"

(A:137) .gﬁ?*{ezﬂ‘[qs(s)r”; + (1~ DE=* {5 g(5] ) = 1

wheie . denotes the probability that the test procedure Ieads to the
&bqebtance of Hy, B* stands for conditional expected value uader the
restriction that the process leads to the acceptance of Iy, E*¥ stands
for conditional expected vale under the restriction that the proecess
leads to the rejection of Hy.  Neglecting the excess of Z, over the
boundaries, we have Z,, = log B when the process leads to the accept-
ance of Hy, and Z, = log 4 when the process leads to the rejection
of Hy. Hence (A:137) can be written as

(A:138) LB EHp()]™ 4 (1 — DA EgH)]™ =1
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This identity is valid for all values of £ for which | ¢(f) | Z 1.t Letting
{ = #,(r) and £ = {7}, we obtain, from (A:138)},

(A:139) LBYOE(e™) 4 (1 — LAY B (™) = 1
and
(A1140)  LBUOENE™) + (1 — DASES(™) = 1

Solving these equations in E*(e™) and F**(¢™), we obfain

Ee] Atz('—) — Atl(r) 7\
{A:141) Ex(e™) = LIBEIAR0 _ Jut pbl)] R
and . \ O
(A:142) E#*(e™) = R _ phi R ®
(] — L.)[Blf-l{‘r)‘_x_lh(‘f] _ ‘411(T)B:2F32] \
K

for all imaginary values 7. )
The unconditional expected valuc F(e™) is \cldpa.rly equal to

(A:143) E(e™) = LE*e™) + (1 T,L}E**(eﬂ)

Hence, the characteristic function of % fwgiven by

~
LNy

_{2(:(}:,;; “h(f) + Bh(f) _ sz(fJ
(.’X:‘l 44) y’/(?’) = E(@T'n) = sr:BE;(T)AfQ(TJ _ Ah{f)Btg(rJ

~ 4

(for all imaginary 7). £

By definition, the g3 edted value E(e™) is the characteristie func-
tion of n, and {A:1¢4)\gives the desired approximation formula when
the excess of Z, %t the boundaries can be neglected. Our deriva-
tions yield alghyapproximation formulas for y*(r) = E*(¢™) and
() = f_‘z*\*'@ﬁ?) The function ¥*(r) can be interpreted as the char-
scterigticfumetion of the conditional distribution of 7 when the process
leads .t’p“’tﬁle scceptance of Hy, and **(z) can be interpreted as the
cha;r&étéristic function of the distribution of 7 in the subpopulation
7N / -
simples leading to the rejection of Ho.

‘As an illustration we shall determine YH(r), ¥**(r), and ¥{r) when
» has a normal distribution. Denote by the mean of z and by « the
standard deviation of z. Then eguation (A:136) can bc written as

0,2
— log ¢(8) = —ui ‘532 =T

1This follows from the considerations in Section A.2.2, sinee I¥ is the whole

complex plane in our case.
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Hence

—p E '\/JuT:_QE
{A:145) b=
Thus ’
(A:146) ho) = -2 LV e,
and e ¢
(A:147) L) = — ; ~ alz N

where the sign of v/  is determined so that the real parg \of
Vu? — 26%7 is positive. Substituting these values for {7 anzl\iz(f)
in (A:141), (A:142), and (A:144), we obtain ¢*(r), ¢**(r), angd*¢{7) in
the case when 2 is normally distributed. According to fm‘mula (3:43),
an approximation to L is given by

(A:148) LAl ’M\
M 4 j 4.!; - Bh ) \\‘:
When 2 1s normally distributed we have \ v
— 2. A\ g
(Ai149) h= —;‘ .

It is of interest to consider xhé follrmmg two Hmiting cases: (1)
B = 0and 4 is a finite positive Valup (2) B is a finite positive \aluo
and 4 = +e. Tt can be&hown that E(n) will be finite in case (1)
only if E(z) > 0. Similaly, F(rn) will be finite in ease (2) only if
E(z) < 0. Thus, inseate (1) we shall assume that E(z) > 0, and in
case (2) we shall %u;ume that B{z} < 0. To obtain the characteristic
funetion ¥(r) of @\ case (1), we have to determine the limiting value
of the right- h@'\l member of (A:144) when B — 0. For this purpose
we shall lizsthderive the limiting value of B /B0 = pEtI—0l) \hep
B—0., \Sirice in case (1) E(z) is assumed to be > 0, the quantity
h = hm tg{“r) must be negative, as has been shown in Seetion A.2.1.

N 7';»‘0

H‘enée for small 7 the real part of £,(r) is negative. On the other hand,
the real part of #{r) approaches 0 as r — 0. Thus, for small = the
real part of {7} — £,(s) is negative, and, therefore,

(A:150) lim [ B0 | o 4o

From {(A:150) and from the relation leI B | = w it follows that
with B — 0 the right-hand member of (A 144) converges to
{A:151) AR
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Thug, it £{z} > 0 the churacteristic function of n in case (1) is given
by (A:151). When 2 is normally distributed, 4 (r) is given by (A:146).
ITence, for normally distributed z with 4 > 0 the characteristic func-
tion of n in casc (1) is given by
I o T
(A1152) AT

In case (2) we bave assumed that E(z) < 0. Hence #(r) and
t2{r) — t1{r) will have a positive real part for small . Thus,

N
(A:153) ]Jm | 40 | = I]_m [ An-nl b g .
e \'
From {A:153) it follows that the hmltlng value of the rlght-hand MG
ber of (A:144) when A — <« is given by £ w:
(A159) B0 ,,’\*’

Thus, if E{(z) < 0, the characteristic func,tq\“n of n in cuase (2) is
given by (A:154),

The moments of #n can be ohtained bgh d}ferenhatmg the charactor-
wstie funetion of n. For any pomtwe 1nteger 7 the rth moment of # is
given by o0

| 3

L Q

(A:155) E(?%?i’l%’ — V).

We can also ()btaln tl}e‘\oondmnna] moments of 7 in the subpopula-
tion of samples for which™Z, < log B, as well as in the subpopulation
of samples for which Z,, = log A. Let E*(n") denote the cenditional
expected valuesofs" In the subpopulation Z, =< log B, and let £*{(n")
denote the ei{pe‘ctcd value of #° in the subpopulation Z, = log 4.
Then w havfe

N e g
W) = ) mmd B = oyt
’”\‘ d . . .
Whitre ¥*(r) and ¢**(z) are the conditional characteristic functions
given in (A:141) and (A:142).

L

d
(r )s \{’**(7), and, there-

1t may he of intercet fo note

ar . . .

fore, also E(n") = -— y(r) can be obtained from 1dent1ty {A:138) di-
dr”

reetly by successive differentiation. In faet, (A:138) can be written as

(A:156) LBYH — log ()] + (1 — L)AWM[—loge@)] =1
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Taking the first r derivatives of (A:158) with respect to { at ¢ = 0
“and ¢ = h ‘we. obtain a qvbtcm of 2¢ lincar equations in the 2r un-

knowns db;:,!z*(r) and —g'z**( ) (=1, -, r) from which
T =0 =0

d* (T
these unknowns can be determined. For example 2( ) and
T =0
¥ (r) . 1 . .
7 can be determined as follows, Taking the first deriva-
T r=0
tive of (A:156) with respect to ¢ we obtain ~
B dy* A
(A:157)y  E{log BYBY*(z) — LB ¢(()) i{ ) '\..\
' 0\
(1 — L{log A)AY*(r) — (1 — L)A‘ () kf/ (T)
'q.‘:( t)' dr

A
O r= —log @]
Letting ¢ = 0 and ¢ = % we abtain the equ&tignﬁ

INY
¢ (0) dkr'/*(f) ' WV

(A:158) LlogB — \
g #0)  dr ]My v/

(1—1 logft" (1 — L) @d‘;’**(’)\

S(0)  dr =0
and
") dy*
(A1150) L(log B)B* — LB~ “) WO 0 - Dyes ah —
o ew dr -
¢ \‘ ! h d Lk d
) o) dr =0
&, d’ Ak
‘b (}) and lp @ can be defermined.
Tl

A2 D%nvatmn of Exact Formulas When z Can Take Only a Finite
AN \ Number of Integral Multiples of a Constant

RS
N\ We shall use here the notation defined in Section A.4 without any
further explanation. TLet ¢,(r) denote the characteristic function of
the conditional distribution of » in the subpopulation of samples for
which Z, = ¢d (i =1, -+, 9). The equation in ¢

{A:160) o{f) =e°7
has g roots 4, (+}, + -+, £;(+) such that
(A:161) lim &7 = 4, G=1,--- 9

T=0
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The fundamental identity (A:16) can be written as
(A:162) > e i Tog 6] = 1
=1
Substituting #,(+) for ¢ in (A:162), we obfain
(A:163) ngjeCf““)%(f) =1 G=4-9
=1

N
These cquations are linear in the unknowns ¥{7), ' -, ¥4(r), and %ie

determinant of these equations is given by AN
TS g i A oY’
(&:164) 8(r) = Rt TR el \\ R
él e;ixg(r)a . . ' «E.g g;xeg'(f)clp '

Obviously, 80) = £& -+ £,A. Henee, if’&i‘%‘(} (t=1,---,¢ and
A = 0, then 8(0) # 0, and consequently, 51’?2\;2 0 for any r with suffi-
clently small absolute value. Thus, 13’1({):;"" +, ¥¢{7) can be obtained
by solving the linear equations (A:163)4 The characteristic function
¢(r) of the unconditional distribuﬁ?ah’ of % is given by

(A:165) KG) = Esm(r)
X N i=1

For any positive jntgg_}ai\' r, the cxact rth moment of n, i.c, E(n7), is

given by the rth ’d‘é’ri.{sa.t-ive of ¥(r) with respect to r at » = 0.
A\

L >

N
A6 APP QxiMATE DISTRIBUTION OF n WHEN z IS NORMALLY DIS-
A TRIBUTED

A-ﬁ.'l\f','fhe Case When B = 0 and 4 Is Finite

\Mih"jc-his case we have assumed that B(z) = p > 0. Then the ap-
proximate characteristic function of %, if the excess of Z, over the
boundaries is neglected, s given by (A:152). Let
Al # n

166 "M = —
(A:166) -
o+, (v} Tequires the computation of
d, as Girshick has shown in
to that applied by

! This method of determining ¢1(r)s - _
the roots of cquation (A:160). This can be m_fcndc s C
his paper mentioned in Section A4, if a deviee is used similar
him for determining &, - - -, £ (see Section A4),
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Then the characteristic function of m is given by

(A:167) I = L= ViZ)
where

ap
(A:168) c=250

23
and
(A:169) a=logd

N
The sign of the square root in (A:167) is determined so that tho real
part of V'1 — ¢ is positive. The distribution of m is glVE’:D\TSV

1 Py % \v/
A:170 o f Ym0 gy N
(A:170) 28 J—i 7\
Let AN

Lo e
(A1T71) Gle, m) = —f e T INE L
2wiJ—ia 7.\
and AN\
(A172)  Hlem) = — fw N Vi g
2 —'HO}{L —
Bince R
14 — N\
(A178) - — o oVITETm a3T ( m) PR
Omidt AN 2w 2\/1 — ¢ '
we have ~\N
\‘\&' 1 visi i
(A174) - H(c, m; S mGle, m) = [e“’ 1_‘_'”“} =0
2rt ]
From (A: 17]{:@;1’3 (A:172) we obtain
\{ dH{c, m
(A: 1:5{\ ( ,_2 + Ge,m) =0
de
JQ'"‘;«H‘(& 174) and (A:;176) it fellows that
\/
oH
(A:176) C He,m) +m o™ _
2 de
Hence
2
¢
(A1TT) log Hic, m) = — ™ + log A{m)
4m

where A{m) is some function of m oenly, Thus
]

{A:178) Hie, m) = Mm)e =
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Now we shall determine A{m), We have

1 o 1
ALTO Am) = HO, m) = — —
{ ) (m) (0, m) o e T
Since (1 — #)77* is the charactoristic function of 2x% where x? has the
x?-distribution with onc degree of freedom, the right-hand side of
(A:179) iz equal to

e ™t

1

K(3vVm -
Hence {
A:18 Am) ! ~m KoY
Al =_—F——¢ &\
(A:180) m T vm { ;\ %
Trom {A:;178) and (A:179) we obtain i (":’5
2 Tat & 4
1 - ;—m - \:“\\\'
(A1RD) Hie,m) = T(%)\/Ee \/
From (A:174) and (A:181) we obtain \\
e ANV .
A P = No 4
(A:182) e, m) 2I‘(%l?zf;f e

Hence the distribution of m iz giyémby
o N oL mio

‘A g = Qg dm dm 0=m< @)
(A:183) F(m) dm 2’@% € {
Lot m = (¢/2)ym*.] {’\I&‘\Bcn the distribution of m* is given by

& 2
7 2 ~ 2 (G i)
(A188) B@ dm* = —7x 7 ¢ 2 dm*
4 = Y Ba g  *
Q or (Z) (2) (m*)

Ay el
\M\’w = —_\/F ge ° (s 4 ) dm*
i A/ 2m(m*)”
The funetion (1/m*) + m* — 2 is non-negative and is equul to ¢ only
when m* = 1. If ¢ is large, then D(m*) I8 exccedingly small for valu.es
of m* not close to 1. Expanding (1/m*) +m* —2na Taylor series

around m* = 1, we obtain

{A:185) L 4 m* - 2 = (m* — 1)® + higher order terms
m*
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Hence for large ¢

(A:186) D(m®) dm* ~ \‘//25_ RO Lt S
T

ie., if ¢ is large m* is nearly normally distributed with mean equal to
1 and standard deviation 1/4/%.

A62 The Case When B > 0and 4 =

In this ease we have assumed that E(z) = p < 0. It can easilinbe
shown that the distribution of m = (u®/2¢%)n iz now given by.ihe ex-
pression we obtain from (A:183) if we substitule {(u/6”) log \JB“{Br e.

N/
%

A.6.3 The Case When B > ¢ and 4 Is Finite N

In this ease the approximate characteristic fprﬁ‘él‘on of n, if the
cxcoss of Z, over the boundaries is neglectedh\ Y given by (A:141)

where 4 (7) and £(r) are equal to the right-:h@n’d members of (A:146)

and {A:147), respectively. Let W
u \/ 5
n=—un and\+d= — —
202 N o

.'v

Then the characteristic fullctl.o'nzof m is given by

.‘\4?&[ + Bh A?u . Bht
zlhlth _ Athm

{A187) J/(t{i
where
{A:188) hl\_‘d(l — V1 —t), ha=dll+V1-—-1t)

and ! i - J.magma,rv variable, Letting A% = A, B = B, da = §,
and db‘— b, the characteristic function of m can be written as

o
\ 3

g(g—a""l——t _ EE l—t) + E(eg\/?:é _ e—-g\r"m)

™5 B—miv1—¢ RV 1—
x’{B(G(b alv'l &____e@ BV L t)

ﬁ'(e—ﬁ\fﬁ e b)ﬁ-t) 1+ B avi—i _ P{E—Zb—j\fl—i)
AB(]_ _82(:1, NVl t)

It will be sufficient to consider only the case when u > 0, since the
case when ¢ < 0 can be treated in a similar way, Then @ < 0 and
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b > 0. Since the real part of +V'1 — ¢is greater than or equal to 1,
we have

(A:190) [ ezﬁ_aﬁ—:‘*[ <1
for any imaginary value of & Lot
(A:L91) T = Fa-9Vist
Then
(A:192) e ZTJ ~
From (A:189) and (A:192) it follows that $() can be wrlttcn'm‘the
form of an infinite series: QO
(;\.193) .;.‘;(i) =ZT1'3“NV,1—_E ( A
=1 .‘,j\.\

where A; and 7; are constants and A; > 0, ach™M&W of this series is
a characteristic function of the form given H\A:167) except for a
proportionality factor. Let F.(m) be the dlbmbutlon of m correspond-
ing to the characteristic function ™™ ]‘_ % Then Fi{m) ean be ob-
tained from (A:183) by sub‘-,htutmg A for ¢. Sinee we may infegrate
the right-hand member of (A: 196), term by term, the distribution of

m 18 given by )

4

. T
Al e Z—F,‘ m) | dm
(A:194) F(m)'s{i{?i\ L:l ~ ( )]
A.84 Some Remarks\ '

Since m is o disbuste variable, it may seem paradoxical that we
obtamed a pmbaiﬁh"oy density function for m However, the explana-
tion lics in th&/fact that we neglected ¢ = Z, — Z, and this quantity
iz 0 only m\the limitizg case when u and o appioach 0.

If ||g \and o are sufficiently small as compared with log 4 and
| log & | “the distribution of m given in (A:194) will be a good approxi-

nfativn o the exact distribution of m, even if z is not normally dis-
truted. The reason for this can be indicated as follows. Let
(A:195) ar= Yy g (=12 adinf)
j={—LUrl
where r is a given positive integer. Since the variates z; are inde-
pendently distributed, each having the same distribution, under some

weak econditions the variates ¢ (1 = 1,2, -~ -, ad inf.) will be nearly
normally digtributed for large r. Hencc, conadr,rmg the cumulative
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sums Z/& = g1¥ + 2% 2> (0= 1,2, -+ -, ad inf.), the distribu~
tion given in (A:194) is applicable with good approximation, provided
that | x| and +/7e are small compared with log 4 and | log B | so
that the difference ¢ = Z,* — Z,* can be neglected.

It would be desirable to derive limits for the ervor in the cumulative
distribution of m caused by neglecting Z, — Z,. No such limits have
yvet been obtained,

v A7 EFFICIENCY OF THE SEQUENTIAIL PROBABILITY RATIO TEST

Let 8 be uny sequential test for testing Hy against I, such that
the probability of an error of the first kind is o, and the pmbablllty
of an error of the second kind is 8, and the pmbablllt} that the
test procedure will eventually terminate is 1. Let S" be the se-
quential probability ratio test whose strength is edi 3,1 to that of 8.
We shall prove that the sequential probability catie'test is an optimum
test, ie., that Eyn |S) = Esxn|8) (& = 0, DNM"Tor & the excoss of
Z,, over logA and log B can bo neglected 2 \Fhis excess is exactly 0
if 2 can take only the values ¢ and —d<ai‘1‘d if log A and log B are
integral multiples of d. Tn any other ca:ﬂr(: the excess will not he iden-
tically 0. However, if [ Elz) [ und,i‘he standard deviation ¢, of 2 are
sufficiently small, the excess of [ aver log A and log B is negligible.

For any random variable Uy "ﬂe 511:1]1 denote by B u [S) the con-
ditional expeeted value of. Under the hypothesis H; (£ =0,1) md
under fhe restriction iha{ ¥, is accepted, Similarly, let E*(u ')
be the eonditional e@}euted value of u under the hypothesis H;
(¢ =0, 1) and under the restriction that Hy is aceepted. In the nota-
tions for these cxpeeted values, the symbol 8 stands for the sequential
test used. Le:t Q7(S) denote the totalily of all samples for which the
test 8 lead&to the aeceptance of H; Then we have

\“

o P1n PQe(8)] 8
A:198) aosf Ml
( 1\9@ Eo (?JUnl’S) PlQe®] 1 —a
t&107) By (p_ S) _ PS8
pﬂu PU Ql(b)] I
(A:198) B * (pﬁn S) _ Pol@S)] 1 —a
Pin Pl[Qo(S)] ‘8
and -
(A:199) B+ (qug | S) Pl:(®] o«
Pin PiQ:«($ 1 —8

1 Bi(n]8) deuotes the expocted value of # when F; is true (# = 4;) and the sequen
tial test & iz nged.
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To prove the optitaum property of the sequential probability ratic
test, we shall first derive two lemmas,

Lemma A.2. For any random variable v the tnequality

(A:200) "™ < E(e)
holds.

Proof.  Inequality (A;200) can be written as
(A:201) .12 B

where o' = u — F(u). Lemma A.2 is proved if we show that (A:2000\
holds for any random variable »' with zero mean, Expanding e%ain

Taylor series around %' = @, we obtain \ A
(A:202) e”' =144 _l_ %urzes(u’) (‘:}"x“;
where £(u') lies botween 0 and «'. Hence “‘\: '
(A:203) E(e) = 1 4+ 2E[2) 2 1

and lemma A2 is proved. ,:’.\\“’

Lemma A.3. Let 8 be o sequential lest sgx{:\fb that there exists a finile
tnbeger N with the property that the numbef n'f observations required for

the testis £ N. Then ? N
E: (1og:§’£“] S)

(A204)  Hin]8) = —mmi G =0,1)
L Hiz)

The preof is omitt {\isiﬁ{:e it is essen’r:ially t.-h(: gsame as that of
cquation (A:69) for the Sequential probability ratio test.

Ou the basis of fethmas A2 and A.3 we shall be able to derive the
following theoz‘;s{fn:.? g

Theorem; T¥l S be any sequential lest for which the probability of an
error of t]:’%rst Find 15 a, the probability of an error of the second fcmd
28 8, @?ﬂf’tﬁe probability that the lest procedure well evendually terminale

isenual to 1. Then .

: ! 1 d + alog Lz ﬁ}
(1&:205). Eyln } 8) = E‘Kg[(l - 05} SR o
and - 18

. L~ §)log J
(A:206) Ey(n|S) EE@ 131021 —-a+( o

2The validity of (A:204) has been cst&blisfﬂ?d under very gCﬂer&lhm‘ndiEfrn’:
even when the probability that n > N is posilive for any {\f See the au
avticle, “Some Generslizations of the Theory of Cumulative %ums, . ;
ﬂ_’fafhe;naiica.é Statisties, Vol, 16 (1945}, and D Blackwell, *On an Equation o
Wald,” The Annnls of Mothematical Statistics, Vol. 17 {1946).

7 Phe Annals of
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Progf.  ¥irst we shall prove the theorem in the ease when there
exists & finite integer N such that » never exceeds N. According to
lemma A.3 we have

1 1n
(A207) Eoln|S) = 7 (log zo-- S)

olZ
1 Pia

= {(1 — e} Fy* (log - | S) + o By** (]ng, r S) \

E{}(z) ., Pon Pan N

and . A

Pin .

(A208) Ey(n|8) = —-F (Iog — 5) A
| K ( ) Hon \' \"..\

1 n
= I:JBEl*( ) + (1 — d)f&l**‘ {103 pl | S)J
El(‘z) Pon \'\. Pon

From equations (A:196} through (A:199) and lelrim”a A2 woe obtain

the inequalities AN
" 8 ~ \“
(A:200) ™ (hw P | 5) < Jog — Y
1 — a‘ ,‘
(A:210) Eo** (log— " s) 10;:, f—B
pCln Tw
Pin [l —a
{(A:211) 10;_, — ’ —Ll log —— | ,S) = log——
Pon .I6
and
(A:212) E,** (mg?ﬂ i s) — Iy (log P ; s) = log - Ra.
P1a Pin I — 3

Since Fg(Ns 'ﬂ (A:205) follows from (A:207), (A:209), and (A:210).
Similarlystnee E1(z) > 0, (A:206) follows from (A:208), (A:211), and
(A 21@n This proves the theorem when a finjte integer & exists such
thatyr'= N.

o prove the theorem for any sequential test S of strength (o, 8).
let Sy be the sequential test wo obtain by truncsting 8 at the Ath
ohservation if no decision is reached before the Nth observation. Let
(@, Bx) be the strength of Sy, Then we have

(A:213)  Eo(n|S8) = Ey(n| Sy)

1 B 1 — By ]
= — 1 — wx) log — -
Eo(z} [( wy) log - + ax log -
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and

(A214) Ein|8) z Ei(n]8y)

1 [ B 1 — 8y
= 8x log - + (1 — 8w) log ——— ]
Ei(z) 1 — ay ) log ay
Since 1&3_11(1 ay = a and lrim Bx = 8, inequalities (A:205) and (A;206)
follow from (A:213) and (A:214). Hence the proof of the theorem is
completed. '

Tf for the sequential probability ratio test 8/ the excess of the r:urmt
lative sum %, over the boundaries log 4 and log B is 0, Eo(a{ 8 is
exactly equal to the right-hand member of (A:205) and Egfn S’) is
exactly equal to the right-hand member of (A:206). Ilgnéé, in this
case, & 1s exaetly an optimum test, If both | £(z) | angd cr;' are small,
{hie expected value of the excess over the bound;.ﬁcﬁ:s will alzo be
small and, therefore, Eg(n |8 and Ey(n|S)Ngil be only slightly
larger than the right-hand members of (A:205))and (4:206), respec-
tively. Thus, in such a case, the sequen’gi'sxf @robability ratio test is,
if not exactly, very nearly an optimumtess.®

Tf 8, approaches f, then the l'a,ti.o’szo‘fihc upper limits of Eyn | 87
and Ey(n |8, as implied by (A:3% and (A:78), to the right-hand
members of (A:205) and (A :206); respectively, converge to 1. Thus,
the cfficiency of the sequentidh probability ratio test, if not exactly 1,
converges to 1 when # —8 The upper bounds for Eyn [ S and
Fiin | 8 given in (A:F1)and (A:78) determine lower bounds for the
efficioncy of the seq}lén}ial probability ratio test S’

A8 DETERMINATION OF AN OPTIMUM WEIGHT FUNCTION w(d) IN

SOME SPE(I;:IISJ CASES OF TESTING SIMPLE HYPOTHESES WITH

NO RES’B@CTIONS ON THE POSSIBLE ALTERNATIVE VALUES OF
O\ THE PARAMETERS

A8 A Class of Cases for Which an Optimum Weight Function w(8)

”’\ - 0
) Can Be Determined by a Simple Procedure
Tet (05, «- -, ) = (6:° + -, 8:°) be the simple hypothesis Hy to be
tested snd denote the distribution of = by f(z, 01, -+, ). ASSU.II’.IB
the boundary of the zone w, of preference for rcjection 13 & surface in
the parameter space and denote it by S,. Assumec, further, that it is
2 The suthor conjectures that the sequential prabability ratio test is exactly an
optimum test even if the excess of Z, over the boundaries is not 6. However, he

did not succeed in proving this. ] .
+ Yor the definition of (he efficiency of a sequential test sce Section 2.4.1.
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possible to find a non-negative function v(8) of the parameter ¢ such
that the surface integral

(A:215) ﬁ 0(6) 28 = 1

and the sequential probability ratio test based on the ratio

f(:rl; Bls R 6k) e f(.’l:m By, -y 6&)9(9) a8
(A:216) = _ RS .
Pon f(xheli"';gk)"'j(xnrel:"':gk)
satisfies the following two conditions (for any values A and &WX1) -
The probability 8(8) of committing an crror of the sccond (sind {of
accepting Hy when ¢ is true) is constant over the surfaet 85 (2) for
any point 8 in the interior of w,, the value of 5(f) d{)(&KJiUL excoed the
constant value of 3(#) on the surface S, )

Wo shall now show that »(8) may be regarded as\ar optimum weight
function in the sense defined in Section 4.1.3, ahél the probability ratio
test bascd on the ratio (A:216} provides a“a}lution to our problem.
In fact, the weight function »(f) over the Gurface S, can be eonsidered
a limiting easc of a weight function wi which takes the value 0 for
any 4 in the interior of w, whose digi;ﬁﬁce from the boundary exceeds
some positive A, with A approa@h;’hg 0 in the limit, Tt follows from
condifions (1) and (2} that TofNhe weight funection (6} the maximum
of g(0) in w, iz equal pg“:bhe weighted integral of j{(f), ie., to

fﬁ(&)v(ﬁ) ds. Consider\}low any other weight function w*{(#) and
3 O

Q!

denote the resul{:iné sprobability of an error of the second kind by
B*(6) when w*(@hls used instead of #(§), Tt has been shown in Section
4.1.3 that th€ following relations hold with sufficient approximation
for practicdly UIPOSes:!

*

, \ (G 3% =f - B(_A__ D
a2 [oosr@w = [wawas - 77—

Hence the maximum of 8%(6) in », s = B(d — 1)/(4 — B). The
optimum property of the weight function «{#) follows then from the
faet that the maximum of »(8) is equal to B{4 — 1)/(4 — B).

In several important statistieal problems once ean casily find a weight
funection »(6) such that conditions (1) and (2) arc fulfilled. We shall
show, for example, that sneh a weight function »(8) can easily be de-
termined for testing the means of normally distributed variables with

1 @8 denotes the infinitesimal surface clement,
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known variances. Affer the weight function #(#) has been found, for
practical purposes we may let 4 = (1 — 8)/a and B = 8/(1 — «)
where « i3 the required value of the probability of an error of the first
kind and g is the required upper limit for 8(8).

Although we have so far assumed that X is a single random vari-
able, all the results remain obviousty valid when X is & random vector,
Le., X represents a set of p (p > 1) random variables X, . ¢
The only change tn the formulas is that the ath chservation =, will
have to be replaced by a set (#1a, - -+, Zpe) of p values where z;, repre-
gents the ath observation on X, \

O\
A8.2 Application to Testing the Means of Independently -and“Nor-
mally Distributed Random Variables with Known Vanances

Let Xy, « -+, Xi be & normally and mdvpr\nden’rly dlstubuted ran-
dom variablu.s with 8 common known variance ¢ ,W?‘l\he mean values
81, -+, B arc assumed to be unknown. Suppbdsethat it is required
to test the hypothesis that (8, ---, ) (4‘}]‘0 e 89, Assume that
the zone w, of preference for re;echon ig gn‘en by

+V (0, — 6,°7 +-- + (9k — Y =

where § is some given posfmu Value Then the boundary S, of w, is
a sphere with center 6° = (8,2 ,'. o, 8" and radius do.  Let »(d) be
constant over 8, and equglNto fhe rcciproc-al of the area of S,. We
shall show that for this,weight function conditions (1) and (2) of the
preceding section ar fulfilicd. TFor this purpose, we shall first prove
that the ratio (A%216) is a monotonically increasing function of
(71 — 6%% 4+ & (@ — 6.°)° where & is the arithmetic mean of the
Observations@ .. In fact, in our case the ratio (A:216) reduces to
A\

\ {; u_ﬂa}
“ ".\'\cf £ €Zl Q‘El " dS Z G:—ﬂtol (ﬂ" —&"
N & S = _%“62f dS
Ag = ce
< s e A

\‘: e 207

where ¢ is equal to the reciprocal of the area of S, ILet 7o denote

S @

tween the vector (Z; — 6,°, -+, & — 6,y and the vector (8, — 8,
., 6, — 6;%). Then (A:218) ean be written as

(A210) ce” %?452.[; Ve ¥ o0 @ g9

and let p(8) (0 < p < ) denote the angle be-
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Because of the symmetry of the sphere; the value of (A:219) will not,
be changed if we substitute v(8) for p(d), where v(8) (0 £ v = =) de-
notes the angle between the vector # — 87 and an arbitravily chosen
fixed veetor . From this it follows that the value of (A:219) depends
only on 7.

Now we shall show that {A:219) is a strietly inereaging function of
Ty, Llor this purpose we merely have to show that

(A:220) I(ry) —f pire 8 cos I 0] g N
O\
is o strictly increasing function of v,. We have 2N\ ™
dar rr ("}}'
(A:221) 0:) f nd cos [y(B)le™= " DO s o
dry - S

Denote by S, the subset of S, in which 0 £ y(gNE #/2, and by S”,
the subsct in which 7/2 < v(f) £ x. Becausefgbthe symmetry of the
the sphore we have ,\
(A:222) f 7 § cos [y(8)]e™= oo v s

S"f .~: NS

=f n b cos [r — y(6))e" " =IO 48
8%

74\

\ N - —f n 8 cos [y(8)je =t e 0l gg
L > S'r
Tlence O

\.’
A1) nirsoos ly®] _ ~ndrg cos YOy 7a
(A228) — A& n s [ confy@(e el - el g

The ri h?g—hand side of (A:223) Is positive. Hence, we have proved
th %xpreqqmn {A:219) or (A:218) is a strictly increasing function of ..

"shall now show that B(8) s constant over any sphere S.(d)
vnth center 6° and radius d and that it decreascs monolonically swith

increasing d. For this purpose let g, ---, yx be an orthogonal
linear transformation of x; — 6° .-+, x;, — 6.° so that F(y) =

VO -0 F o (0~ 0" and Ey) =06 =2, -+, k). Since
T R R e N L L R {Fr — M2 and sinee (A:219)
depends only on (Z; — 6,%2 +-+- + (& — 892, it is seen thut the
sequence of exprossions (A:219) formed for the sequence of integers
n =12 -.., ete, has a joint distribution which depends only on
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Vi —6,°% +-- -4 (6, — 6,")%. Hence 3(0) is constant on any
gphere S,(d). Since (A:219) i3 a strictly monotenie funetion of +,, it
can be shown that (6} is monotonically decreasing with increasing d.
Henee, conditions (1) and (2) of the preceding section are fulfilled and
we can test the hypothesis that 8 = §° by the sequential probability
ratio test based on the ratic (A:218).

If & = 1, 1.e, if we test the mean value of s single random variable
X, the gphere S, iz a null-dimensional sphere consisting of the fwo

points 8; = ¢ and 8; = —dr and {A:216) reduces to the ratio of H1n
16 pon given by (4:8) and (4:9), respectively, in Section 4.1.4,
O\

A9 DETERMINATION OF OPTIMUM WEIGHT FUNCTIONS:!}JH(G) AND
1,{8) IN SOME SPECIAL CASES OF TESTING COMPOSITE“HYPOTHESES

A.9.1 A Class of Cases for Which Optimum Weigﬁt‘f‘unctions w,(8)
and w,(8) Can Be Determined by a SimpleProcedure

Let f(z, 81, - - -, 8 denote the {ilist-ributiqnihh‘:::: involving & unknown
parameters 81, - -+, 8. Supposc we wiskbQ\€st the composite hypoth-
esis H,, that the parameter point 8 liesdn, the subsct w of the parameter
space. Lot w, denote the zone of préference for acceptance and w, the
zone of preference for rejoction.addtsume that the boundary of I8
a surface S, Suppose that it 1§ possible to find two weight functions
2,(8) and #.(0) such that s )

imx\
f\&(ﬁ) =1, Lu,(a) ds, = 1

and that thc,ws@éitiéntial probability ratio test based on the ratio
N u
'S N
'\\“ Ll!'F(B)Hf(xu; 6.1: T 93\) dST
) v a=1
(A:23%) o —

\/ por f va(e)flf(xa, By, » -, O) 40

satisfles the following conditions (for any values A and B)E (1) Q(B) is
constant In we; (2) B(8) is constant over 8,: (3) for any point 8 n the
interior of w,, the value of 3(6) does not exceed the constant value of
3(8) on 8. _

Woe shall now show that v,(8) and v,(6) may be regarded as opfnmum
weight functions in the sense defined in Section 4-‘2:2. For this Iiur-
pose, let w,(#) and w,.(6) be any other weight functions and let & (6)

2 8
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and 8*(¢) be the rcsulting probabilitics of errors of the fivst and second
kinds when w,(8) and w{#} are usod. Sinece, as has been shown,

1 _
(A:225) f e =
and
f *(8)w,(8) db = B4 -1
8w, 1_&

hold with good approximation, we zee thal in w, the maximum c}
o) = (1 — B)/{4A — B), and in « the maximum of FER =
BA —1)/(4 — B) with good approximation. But if £x#) and
v,.(8) are used, it follows from conditions (1), {2}, and (3) tlmt {with
good approximation} the maximum of aff) in wu ¢ equal to
(1 — B}/ (A —B) and the maximum of 3@ m«\wr iz equal to
B(A — 1)/(A — B). Ilence these weight functiehd are optinam in
the sense defined in Section 4.2.2. NG

In some special but important Sf-ltlbfl(‘a]\p}‘[ﬂ)lem‘:‘ one can casily
find weight functions #,{6) and »,(8) whighMsatisfy conditions (1), (2),
and (3). It will be seen in the next section that such weight functions
can easily be construeted when the n’:;éan of a normal distribution with
unknown variance is being tested Agam for practical purposes we
may let A = (1 — 8)/a and B = B;’(l — «), whore o is the required
upper bound of «(f) in wa ;md 8 is the rogquired upper bound of 3(6)

in w,, \\

A9.2 Application o) Testmg the Mean of a Normal Disfribution with
Unlmown Vanance (Sequential {-Test)

Tet X be(a) nnrma]ly distributed random variable with unknown
mean & afdh mknown variance oZ. Suppese we wish to test the hy-
pot-hgsi\s‘ that # = 6;. Furthermore, assume that w, is given by the set

o@i "p;oint-s {8, 6} for which \ b — b

= 8, while w, consists of all

[12
points (fy, o). Then the boundary 8, of w, consists of all points (8, o)
. — B . . . . .
for which . 0l = 8, e, it contains the points {8, «) for which

either # = &, + ¢ or 6 = 8, — do.

For any positive value ¢ we define the weight functions »,.(s) and
vre(o) as follows: veele) = 1/c if 0 £ o £ ¢ and equals 0 for all other
values of v. The weight function v,.(¢} is equal to 1/2e if 0 €0 £ ¢
and ¢ = 8, 3¢ and equal to 0 otherwise. Iet
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(A:226)

— 1 - ﬁq E{py—"
Pin = Svrc(o') e 7 h do

(2m)%"
1
_ 1 l cle—mx(ﬂa—ﬂo—ﬁa}g 1 —g—i—zz(xa—lﬂo-l-ﬁcr)2
L o o T do
(@m)® d
and
I 11 -Lzp.—o
(A:227) Bon = —5 7 f L g, N
Lo Js o ;
(2n)?
Then O
X {
11 —Fizzi{:a—en—ag)ﬂ T
o 3o 7€ BT s
A:228) =7 = {—
22 R R——;
_ﬂ @ L do_'m‘\
0 ¢ w 4
We consider the limiting case when ¢ . %hus
171, -5 sma—tosdi?) [ R
s e Ot = ) de
(A:20m) Pz )t
LN — 2
oo f "%‘8 03 a0 e
0‘:;0'

The sequential probabilifyrratio test based on the ratio {A:229) pro-
vides a solution to our gf)jr)oblcm if it can be shown to have the follow-
ing three properties :\Cb) a(f, o) is constant in wg; (2) (8, o) 15 a func-

. — g D . s . .
tion of U\"xs‘ﬁlone; (3) B(f, +) is monoionically decreasing with
T(NT
: . #3\— By
increas ) .
Q& v ﬂ

:“\N‘" E Ter

\\TB prove these three properties, let £ denote %-— and 82 denote
¥z, — £)% Since the joint distribution of a sequence of expressions

x —f

corresponding to consecutive values of n depends only on

8=t

[+3

, the first two properties are proved if we show that the ratio

-ty

S

(A:229) is a single-valued function of




206 ' APPENDIX

First we show that the numerator of the ratio (A:229) is 1 homo-

geneous function of (w1 — 6y, 22 — 8, -+, @ — f) of degree
—{n — 1). In fact, making the transformation ¢ = Af we obtain
o 1
5g3 EhaaMy—s)? — =, DAz —Motin?
f (e T e Y do
1]
. E\Ea fy—at)? zsz Ziga—"fn I—o{J) I
(M)
1 f 1 2(zq— g — ) Bl — o +at)
- —fe Jtz o r:fz N d
et ﬁ( + ,\J
N\
This proves that the numerator of (4:229) is a h01n0gnnmm~. “Tunction
of @y — 8y, -+, @ — B of degree —(n — 1). ‘snmlaﬂy ‘it can be

shown that the denominator of (A:229) is alse a hambeencous fune-
tion of degree —(n — 1). Thus, the ratio (4:2200¢ a homogencous
Tynclion of zero degree in the variables x; — % -, &y — Bo.

It ¢an be verified that (A:229) is a funchQ only the two expres-
gions Z(zy — 8p)% and Sz, — fo), Lo, N %

(A:230) Pin — o2 — a;i)’%"z (e — 00)]

0n
v,.
3

Let » = | V (@, ~ 80)? | Smco {A:230) is a homogeneous function
of zero degree in x; — 8@, — #, its value is not changed by
substituting (x, — BU) /Nbr xu — ﬂn Henee

Plin ) Tw — 0\ Z(zn — 6g) n(E — g}
(A:231) — = zﬁE ( -~--~-—) ,— —] = [1, C =
ptm ¢ » Z v v -

¥

Since d)E'& — 00)?%, —Z{xa — 00)] = $[Z(xa — 60)%, S(za — M},
BEE fh;a\:t N

QY P, [E?___:;ﬁlf]

Pon ¥
L&), i E — !
Since e——— 1% a single-valued function of ‘ _ l , we have proved
o
Pin B :
that — iz a single-valued function of ]-——b—-— . Hence properties (1)
Pon 3

and {2) are proved.
In order to prove property (3) of the sequential probability ratic
test based on the ratio (A:220), it is sufficient to show that (A:229)
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¥ —dy

i

:E~60]

is & strietly increasing funetion of K Since J

15 &

N : : & — 6\
atrictly increasing function of (i__o) , we have only to show that
v

s a\2
(A:229) iz a strictly increasing function of (E 60). The latter
o
statement is proved if we show thaf {A:229) increases with in¢reasing
value of { & — 6| while v is kept fixed. For a fixed value of v the
denominator of (A:229) i constant. Thus, we merely have to sifp\v
that the numerator of (A:229) ncreases with increasing |€\~— 60|

4

while v is kept fixed. This follows easily from the fact that %/

« \J
T — g} (Z—8e)8 PR
S A A
e 7 Fe e ,*\\ $
&
iz a strictly increasing function of | E—1f | \ >
N
JQ.,
L W4
"\’
L
% N/
X ¢
s:s‘.«
5\“‘
AN
S

7N

N\

:"\\
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fribution, 92
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Average sample number function, 25
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exact formula of, 182 :"‘\
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teat of mean of, 88

5 and 9 for, 164

5 and & {or, 179
BrunsaTy, 4. W., 169
BracxwsLn, 1., 1970
Brown, (Eorez W., 3, 48n

(.4 f., see Cumnlative distribution funce
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mal distribution, 86 28N
Comparison of two sequenti@tests, 31
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of region, 152 . N
Confidence intervaly 1653
Confidence regiog; 152
Conjugate dishilmition, 176
Critical region M4

choicemf 16
mcu, owerful, 17
prmer of 17

wgize of, 17
umforrnly most powerful, 20
*Cumulative distribution function, 6
continuous, 8
step function, 8§
Cumulative sum Z,, exact distribution
of, 181
Curziss, J. H., 82n

Density funetion, 9

Distribution, of a random variable, 10

Doper, H. F., 1

Double dichotomies, 106
classical test procedure for, 107
exact non-scquential test for, 107
sequential test procedure for, 109

Fffective units, 106
Efficiency, of current, test procedure, 33
of production process, 100
of sequential probability ratio test
1949
of sequential test, 34
Hrror of the first kind, 16
weighted average of, 81
Error of the second kind, 18
weighted average of, 74, 81

209



210

Frror weight functions, for mulli-valued
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for test of hypothesis, 28
simplified form of, 144
Estimation, current theory of, 151
gequential procedure of, 153
Expecicd value, 11
mean, 11
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variance, 11

Frsnrr, R. A, 107
Fruzauar, Harown, 3n
Frampaaw, MitTon, 2, 48n
Fundamental idenlity, 159

Grmsmrog, M, A, 84, 98, 1330, 1832, 191n
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Hypothesis, see Statiglical hypothesis
\ X
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pivdotble dichotomics, 113
#\ef/mean of normal distribution, 121
‘of standard deviation of normal
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Mamarawons, P, C,, 2
Mean value of a random variable, 11
Momenis of g random variable, 11
Multi-valuned decision, 135
error weight functions lor, 142
sequential sampling plan for, 139
ARN funclion of, 141
class C, 146
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Multi-valued deeislon, scquential sam-
pling plun for, operating charac-
terisiios of, 141

optimum, 143n
risk funclion of, 143

Nevuan, Jeney, 15, 76n, 151
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Normal distribution, 10
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by, 51
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Iwalue, 80, 117
t€sh Yhat standard deviation of, is
,} 7 below given value, 125
b 8 and 5 for, 165
£ and £y lor, 179

given

Observalions, dependent, 43
from finite population, 13, 43
independent, 13
joint probahility distribulion of, 14
OC funetion, ses Operating characicr-
istic function
Operating charactenistic function, 24
derivation of approximation formula
of, 48, 116
exact forraula of, 182
of test of binomial distribution, 85
of test of double dichotorics, 113
of test of mean of normal disiribu-
tion, 122
of test of standard deviation of normal
distribution, 129
requirements imposed on, 31
upper and lower limits for, 162
Operating  characteristies, of
valued decision, 141

raulti

Parameter, of a distribution, 11
Parametor point, 24
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Parameter point, importance of wrong
decision as function of, 27, 142

Parameter space, 28

subdivigion of, into three zones, 28
Pransown, Heow 8., 15, 76n
Population, 7

finite, 7

infinile, 8
Probability density function, 9
Probability distribution, 10

joinl, 14

Quality control, to mainlain production
slandard, 134
when upper limit of mean of qual-
ity eharaclerisiic is specified, 117
when upper limit of variabilily of
quality characterisiie is specified,
125

Random seleetion, 5

Random varable, b
cumulative distribulion funetion of &,
disercte, 10
probahility distribution of, 10

Qejection number of sequential prob- Y

ability ratio test, of binomial dis.'-:
tribution, 92 S
of double dichotomies, 111 \‘
of mean of normal distrip@ition, 120,
e ¢, M
of slandard deviatiginof normal dis-
tribution, 1232>.™
Risk function, 1427\
as hasis of {ebitction of sequential
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Romma, H 6, 1

Saniple, 13
effeciive, 23
nofective, 23
of type 0, 40
of lype 1, 41

Sample pumber n, approximate char-

acterislic function of, 186

approximute distribution of, 191
approximate moments of, 189
exact characteristic funetion of, 191
exuct moments of, 191

Sample space, 22

X N

n

Saving in number of ohservations by
use  of sequential  probability
ratico test, b4

SeHuyLeR, Carramy G L, 2

Hequential estimalion, 153

Hequential probability ratio test, 37

applications of, 88
ABN funection of, 52

determination of constanis of, in
praclice, 44
cfficiency of, 199 p
; N\

for binemial distribution, 80
for dependent observaiions, 434
for double dicholomics, 110, € ™
for normal distribution, ‘geééjng; mMCans
of several indepepdant variables,
201 N\
testing that mﬁ&ﬁ equals specified
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184 \
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yalue! variance being unknown,
W83l 204
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valye, 118
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below given value, 126
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A and B, 65
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procedure for, 33
terminalion of, 157
truneation of, 61
Sequential sampling plan, for multi-
valued decision, 139
Sequential test, 22
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ASN function as basis for selection
of, 33
ARN funetion of, 25
comparison of two tests, 34
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Sequential test, current test procedure
as particular case of, 35
afficicney of, 35
OC function of, 24
opliman, 35
prineiples for selection of, 27
strongth of, 34
uniformly best, 34
Hequential f-test, 83, 204
Stope of acceptance and rejection lines
of sequential probability ratie
teat, of binomial distribution, 94
of double dichotomies, 113
of mesn of normal distribution, 121
of standard deviation of normal dis-
tribulion, 128
Slandard deviation, 11
Statistieal hypothesis, 11; see also Test
of statistical hypothesis
alternative, 16
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esls by simple hypothesis, 71
composile, 13
null, 16
gmple, 13
Statistical Research Group, Columbia
Tniversity, 2, 88n
SreIN, C., 1830, 1530 "
Srocrmax, C. M., 3, 45n &
Strength of test procedure, 34 ‘\
,\\ »
Table, of average p(\u‘rn‘mgﬂ saving in
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crror, 64 £
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sen’at’gn\ due to approximation
of .t’e%t eonstants, 68
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Tabular procedure for sequential prob-
ability ratio test, of binomial
distribution, 92
of double dichotomies, 111
of mesn of normal distribution, 120
of standard deviation of normal dis-
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Test of composite hypothesis, 80
class C of sequential probability ratio
tesis, 82
Girshick’s problem, 84
special case of, tosting thal unknown
paramecter is below glven value,
78
weight functions Tor, 81
Test of simple hypothesis, 70
clags C of sequential probability ratic
tests, 70

weight functions for, 74 Q
with no restrictions on allernglives,
73 ¢\

with one-sided alternatives{ 72
Test of statistieal hvputho‘ﬂs, Ta

as decision betweeiy. {\\u courses of
action, 20 ¢ &

as special ease M Wulti-valned deci-
slon pmbk,m 134

COLIPATISOP tawveen current and se
quentidd procedure for, 36, 54

Neyipag-Pearson theory of, 16

Ilulribu’t' of observations required I

RS )

R &%e’qucntiul procedure for, 22
’:’Ir'unca,ticm, 61

cffect on risks of crror, 64
for binomial distribution, 104

Universe, 7
Variance, 11

WaLDp, Apnana, 3n
WaLnis, W. ALLen, 2, 176n
Weight functions, for test of composit:
hypothesis, 81
choice of, 82
optitaum, 203
for test of simple hypothesis, T4
choice of, 76
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144
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